О расчете трансформаторов: толщина обмотки и сечения сердечника, сопротивление


Конструкция трансформатора

Если посмотреть на трансформатор с внешней стороны, то это Ш-образное устройство, состоящее из металлического сердечника, картонного или пластикового каркаса и обмотки из медной проволоки. Обмоток две.
Сердечник – это несколько стальных пластин, которые обработаны специальным лаком и соединены между собой. Лак наносится специально, чтобы между пластинами не проходило напряжение. Таким способом борются с так называемыми вихревыми токами (токами Фуко). Все дело в том, что токи Фуко просто будут нагревать сам сердечник. А это потери.

Именно с потерями связан и состав пластин сердечника. Трансформаторное железо (так чаще всего называют сталь для сердечника специалисты), если посмотреть ее в разрезе, состоит из больших кристаллов, которые, в свою очередь, изолированы друг от друга окисной пленкой.

Расчет исходных данных и выбор элементов устройства

В первую очередь необходимо правильно выбрать наиболее подходящий магнитопровод. К универсальным конструкциям относятся броневые сердечники с Ш-образной и чашеобразной конфигурацией. Установка необходимого зазора между частями сердечника делает возможным применение их в любых импульсных блоках питания. Однако, если собирается полумостовой двухтактный преобразователь, можно обойтись обычным кольцевым магнитопроводом. При расчетах необходимо учитывать внешний диаметр кольца (D), внутренний диаметр кольца (d) и высота кольца (Н).

Существуют специальные справочники по магнитопроводам, где размеры кольца представлены в формате КDxdxH.

Перед тем как производить расчет импульсного трансформатора необходимо получить определенный набор исходных данных. Сначала нужно определиться с питающим напряжением. Здесь имеются свои сложности, в связи с возможными . Поэтому для расчетов берется максимальное значение в 220 В + 10%, к которому применяются специальные коэффициенты:

  • Амплитудное значение составляет: 242 В х 1,41 = 341,22 В.
  • Далее 341,22 — 0,8 х 2 = 340 В за вычетом падения напряжения на выпрямителе.

Значение индукции и частоты определяется с помощью таблиц:

Марганец-цинковые ферриты.

Параметры

Марка феррита

Никель-цинковые ферриты.

Параметры Марка феррита
Граничная частота при tgδ ≤ 0,1, МГц
Магнитная индукция B при Hм = 800 А / м, Тл

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

Как учесть инерционные свойства трансформатора?

На Рис.2. показана . В нее входят сопротивление источника r i

, приведенное сопротивление нагрузки
R = n 2 R н
или
R = P н / U 2 эфф
, где
n = U 1 / U 2
— коэффициент трансформации,
U эфф
— эффективное напряжение первичной обмотки.

Рис.2. Эквивалентная схема трансформатора.

Инерционные свойства трансформатора определяют малые индуктивности рассеивания L s

, индуктивность намагничивания
L μ
(почти равна индуктивности первичной обмотки
L 1
), параллельная емкость обмотки
С p
(т.н. динамическая емкость) и последовательная емкость между обмотками
С п
.

Как их оценить?

L 1

рассчитывают по формуле (5) или измеряют экспериментально. Согласно индуктивность рассеивания по порядку величины равна
L s ~ L 1 / μ
. Емкость
С р
составляет примерно 1 пФ на виток.

Трансформатор работает подобно полосовому фильтру. На малых частотах он представляет собой ФВЧ с частотой среза ω н = R / L μ

. На высоких частотах элементы
L s
и
C p
образуют ФНЧ с частотой среза
ω в ≈ (L s C p) -1/2
. Последовательная емкость
С п
не велика и на работу практически не влияет.

В модели есть два характерных резонанса.

Низкочастотный (резонанс намагничивания) в параллельном контуре L μ
C р
Его частота
f μ ≈ (1/ 2 π) ⋅ (L μ C p) -1/2
, а добротность
Q μ ≈ (r i || R) ⋅ (L μ / C p) -1/2
(14)

Высокочастотный (резонанс рассеивания) в контуре, образованном L s

и
C р
. Его частота
fs ≈ (1/ 2 π) ⋅ (L s C p) -1/2
, а добротность
Q s ≈ (L s / C p) 1/2 / r i .
(15)

Как влияют эти резонансы?

АЧХ трансформатора подобно АЧХ полосового фильтра, но на ее верхнем краю резонанс f s

дает характерный пик. Реакция на импульсы зависит от включения источника и величин сопротивлений. При малом внутреннем сопротивлении источника
r i
проявляется лишь резонанс
f s
в виде характерного «звона» на фронтах импульсов. Если источник подключается через ключ, то при его размыкании могут возникать интенсивные колебания с частотой
f μ
Рис.3. Пример АЧХ и переходного процесса в трансформаторе. Его эквивалентная схема дана ниже на рисунке 4.

Принцип работы устройства

Трансформатор — это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты. Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки. Каждый трансформатор собирается из следующих конструктивных элементов:

  • сердечника;
  • обмотки;
  • каркаса для расположения обмоток;
  • изолятора;
  • дополнительных элементов, обеспечивающих жёсткость устройства.

В основе принципа действия любого трансформаторного устройства лежит эффект возникновения магнитного поля вокруг проводника с текущим по нему электрическим током. Такое поле также возникает вокруг магнитов. Током называется направленный поток электронов или ионов (зарядов). Взяв проволочный проводник и намотав его на катушку и подключив к его концам прибор для измерения потенциала можно наблюдать всплеск амплитуды напряжения при помещении катушки в магнитное поле. Это говорит о том, что при воздействии магнитного поля на катушку с намотанным проводником получается источник энергии или её преобразователь.

В устройстве трансформатора такая катушка называется первичной или сетевой. Она предназначена для создания магнитного поля. Стоит отметить, что такое поле обязательно должно всё время изменяться по направлению и величине, то есть быть переменным.

Классический трансформатор состоит из двух катушек и магнитопровода, соединяющего их. При подаче переменного сигнала на контакты первичной катушки возникающий магнитный поток через магнитопровод (сердечник) передаётся на вторую катушку. Таким образом, катушки связаны силовыми магнитными линиями. Согласно правилу электромагнитной индукции при изменении магнитного поля в катушке индуктируется переменная электродвижущая сила (ЭДС). Поэтому в первичной катушки возникает ЭДС самоиндукции, а во вторичной ЭДС взаимоиндукции.

Количество витков на обмотках определяет амплитуду сигнала, а диаметр провода наибольшую силу тока. При равенстве витков на катушках уровень входного сигнала будет равен выходному. В случае когда вторичная катушка имеет в три раза больше витков, амплитуда выходного сигнала будет в три раза больше, чем входного — и наоборот.

От сечения провода, используемого в трансформаторе, зависит нагрев всего устройства. Правильно подобрать сечение возможно, воспользовавшись специальными таблицами из справочников, но проще использовать трансформаторный онлайн-калькулятор.

Отношение общего магнитного потока к потоку одной катушки устанавливает силу магнитной связи. Для её увеличения обмотки катушек размещаются на замкнутом магнитопроводе. Изготавливается он из материалов имеющих хорошую электромагнитную проводимость, например, феррит, альсифер, карбонильное железо. Таким образом, в трансформаторе возникают три цепи: электрическая — образуемая протеканием тока в первичной катушке, электромагнитная — образующая магнитный поток, и вторая электрическая — связанная с появлением тока во вторичной катушке при подключении к ней нагрузки.

Правильная работа трансформатора зависит и от частоты сигнала. Чем она больше, тем меньше возникает потерь во время передачи энергии. А это означает, что от её значения зависят размеры магнитопровода: чем частота больше, тем размеры устройства меньше. На этом принципе и построены импульсные преобразователи, изготовление которых связано с трудностями разработки, поэтому часто используется калькулятор для расчёта трансформатора по сечению сердечника, помогающий избавиться от ошибок ручного расчёта.

Что такое КПД трансформатора и от чего зависит

Коэффициентом полезного действия (полная расшифровка данной аббревиатуры) называют отношение полезной электроэнергии к поданной на прибор.

Кроме энергии, показатель КПД может определяться расчётом по мощностным показателям при соотношении полезной величины к общей. Эта характеристика очень важна при выборе аппарата и определяет эффективность его использования.

Величина КПД зависит от потерь энергии, которые допускаются в процессе работы аппарата. Эти потери существуют следующего типа:

  • электрического – в проводниках катушек;
  • магнитного – в материале сердечника.

Величина указанных потерь при проектировании устройства зависит от следующих факторов:

  • габаритных размеров устройства и формы магнитной системы;
  • компактности катушек;
  • плотности составленных комплектов пластин в сердечнике;
  • диаметра провода в катушках.

Снижение потерь в агрегате достигается в процессе проектирования устройства, с применением для изготовления сердечника магнито-мягких ферромагнитных материалов. Электротехническая сталь набирается в тонкие пластины, изолированные друг относительно друга специальным слоем нанесённого лака.

В процессе эксплуатации эффективность аппарата определяется:

  • поданной нагрузкой;
  • диэлектрической средой – веществом, использованным в качестве диэлектрика;
  • равномерностью подачи нагрузки;
  • температурой масла в агрегате;
  • степенью нагрева катушек и сердечника.

Если в ходе работы агрегат постоянно недогружать или нарушать паспортные условия эксплуатации, помимо опасности выхода из строя это ведёт к снижению эффективности устройства.

Назначение и функциональность

Итак, какие функции выполняет трансформатор?

  1. Это снижение напряжения до необходимых параметров.
  2. С его помощью снижается гальваническая развязка сети.

Что касается второй функции, то необходимо дать пояснения. Обе обмотки (первичная и вторичная) трансформатора тока между собой напрямую не соединены. Значит, сопротивление прибора, по сути, должно быть бесконечным. Правда, это идеальный вариант. Соединение же обмоток происходит через магнитное поле, создаваемой первичной обмоткой. Вот такой непростой функционал.

Как измерить диаметр провода

Если у Вас дома завалялся микрометр, то можно им замерить диаметр провода.

Провод сначала лучше прогреть на пламени спички и лишь потом скальпелем удалить ослабленную изоляцию. Если этого не сделать, то вместе с изоляцией можно удалить и часть меди, что снизит точность измерения особенно для тонкого провода.

Если микрометра нет, то можно воспользоваться обыкновенной линейкой. Нужно намотать на жало отвёртки или на другую подходящую ось 100 витков провода, сжать витки ногтем и приложить полученный набор к линейке. Разделив полученный результат на 100, получим диаметр провода с изоляцией. Узнать диметр провода по меди можно из таблицы приведённой ниже.

Пример.

Я намотал 100 витков провода и получил длину набора –39 мм.

39 / 100 = 0,39 мм

По таблице определяю диметр провода по меди – 0,35мм.

Таблица данных обмоточных проводов

Диаметр без изоляции, ммСечение меди, мм²Сопротив-ление 1м при 20ºС, ОмДопустимая нагрузка при плотности тока 2А/мм²Диаметр с изоляцией, ммВес 100м с изоляцией, гр
0,030,000724,7040,00140,0450,8
0,040,001313,920,00260,0551,3
0,050,0029,290,0040,0651,9
0,060,00286,440,00570,0752,7
0,070,00394,730,00770,0853,6
0,080,0053,630,01010,0954,7
0,090,00642,860,01270,1055,9
0,10,00792,230,01570,127,3
0,110,00951,850,0190,138,8
0,120,01131,550,02260,1410,4
0,130,01331,320,02660,1512,2
0,140,01541,140,03080,1614,1
0,150,01770,990,03540,1716,2
0,160,02010,8730,04020,1818,4
0,170,02270,7730,04540,1920,8
0,180,02550,6880,0510,223,3
0,190,02840,6180,05680,2125,9
0,20,03140,5580,06280,22528,7
0,210,03460,5070,06920,23531,6
0,230,04160,4230,08320,25537,8
0,250,04910,3570,09820,27544,6
0,270,05730,3060,1150,3152,2
0,290,06610,2бб0,1320,3360,1
0,310,07550,2330,1510,3568,9
0,330,08550,2050,1710,3778
0,350,09620,1820,1920,3987,6
0,380,11340,1550,2260,42103
0,410,1320,1330,2640,45120
0,440,15210,1150,3040,49138
0,470,17350,1010,3460,52157
0,490,18850,09310,3780,54171
0,510,20430,08590,4080,56185
0,530,22060,07950,4410,58200
0,550,23760,07370,4760,6216
0,570,25520,06870,510,62230
0,590,27340,06410,5470,64248
0,620,30190,0580,6040,67273
0,640,32170,05450,6440,69291
0,670,35260,04970,7050,72319
0,690,37390,04690,7480,74338
0,720,40720,0430,8140,78367
0,740,43010,04070,860,8390
0,770,46570,03760,930,83421
0,80,50270,03481,0050,86455
0,830,54110,03241,0820,89489
0.860,58090,03011,160,92525
0,90,63620,02751,270,96574
0,930,67930,02581,360,99613
0,960,72380,02421,451,02653
10,78540,02241,571,07710
1,040,84950,02061,71,12764
1,080,91610,01911,831,16827
1,120,98520,01781,971,2886
1,161,0570,01662,1141,24953
1,21,1310,01552,261,281020
1,251,2270,01432,451,331110
1,31,3270,01322,6541,381190
1,351,4310,01232,861,431290
1,41,5390,01133,0781,481390
1,451,6510,01063,31,531490
1,51,7670,00983,5341,581590
1,561,9110,00923,8221,641720
1,622,0610,00854,1221,711850
1,682,2170,00794,4331,771990
1,742,3780,00744,7561,832140
1,812,5730,00685,1461,92310
1,882,7770,00635,5551,972490
1,952,9870,00595,982,042680
2,023,2050,00556,4092,122890
2,13,4640,00516,922,23110
2,264,0120,00448,0232,363620
2,444,6760,00379,3522,544220

Какие ферриты можно применить и почему?

Как известно, сердечник в трансформаторе выполняет функции концентратора электромагнитной энергии. Чем выше допустимая индукция B

и магнитная проницаемость μ , тем больше плотность передаваемой энергии и компактнее трансформатор. Наибольшей магнитной проницаемостью обладают т.н. ферромагнетики — различные соединения железа, никеля и некоторых других металлов.

Магнитное поле описывают две величины: напряженность Н (пропорциональна току обмотки) и магнитная индукция В (характеризует силовое действие поля в материале). Связь В и H называют кривой намагничивания вещества. У ферромагнетиков она имеет интересную особенность — гистерезис (греч. отстающий) — когда мгновенный отклик на воздействие зависит от его предыстории.

После выхода из нулевой точки (этот участок называют основной кривой намагничивания) поля начинают бегать по некой замкнутой кривой (называемой петлей гистрезиса). На кривой отмечают характерные точки — индукцию насыщения B s , остаточную индукцию B r и коэрцитивную силу Н с.

Рис.1. Магнитные свойства ферритов. Слева форма петли гистерезиса и ее параметры. Справа основная кривая намагничивания феррита 1500НМ3 при различных температурах и частотах: 1 — 20кГц, 2 — 50кГц, 3 — 100 кГц.

По значениям этих величин ферромагнетики условно делят на жесткие и мягкие. Первые имеют широкую, почти прямоугольную петлю гистерезиса и хороши для постоянных магнитов. А материалы с узкой петлей используют в трансформаторах. Дело в том, что в сердечнике трансформатора есть два вида потерь — электрические, и магнитные. Электрические (на возбуждение вихревых токов Фуко) пропорциональны проводимости материала и частоте, а вот магнитные тем меньше, чем меньше площадь петли гистерезиса.

Ферриты это пресс порошки окисей железа или других ферромагнетиков спеченные с керамическим связующим. Такая смесь сочетает два противоположных свойства — высокую магнитную проницаемость железа и плохую проводимость окислов. Это минимизирует как электрические, так и магнитные потери и позволяет делать трансформаторы, работающие на высоких частотах. Частотные свойства ферритов характеризует критическая частота f c , при которой тангенс потерь достигает 0,1. Тепловые — температура Кюри Т с, при которой μ скачком уменьшается до 1.

Отечественные ферриты маркируются цифрами, указывающими начальную магнитную проницаемость, и буквами, обозначающими диапазон частот и вид материала. Наиболее распространен низкочастотный никель-цинковый феррит, обозначаемый буквами НН. Имеет низкую проводимость и сравнительно высокую частоту f c . Но у него большие магнитные потери и невысокая температура Кюри. Никель-марганцевый феррит имеет обозначение НМ. Проводимость его больше, поэтому f c низкая. Зато малы магнитные потери, температура Кюри выше, он меньше боится механических ударов. Иногда в маркировке ферритов ставят дополнительную цифру 1, 2 или 3. Обычно, чем она выше, тем более температурно стабилен феррит.

Какие марки ферритов нам наиболее интересны?

Для преобразовательной техники хорош термостабильный феррит 1500НМ3 с fc=1,5 МГц, Bs=0,35..0,4 Тл и Tc=200 ℃.

Для спец применений выпускают феррит 2000НМ3 с нормируемой дезакаммодацией (временной стабильностью магнитной проницаемости). У него fc=0,5 МГц, Bs=0,35..0,4 Тл и Tc=200 ℃.

Для мощных и компактных трансформаторов разработаны ферриты серии НМС. Например 2500НМС1 с Bs=0,45 Тл и 2500НМС2 c Bs=0,47 Тл. Их критическая частота fc=0,4 МГц, а температура Кюри Tc>200 ℃.

Что касается допустимой индукции B m , этот параметр подгоночный и в литературе не нормируется. Ориентировочно можно считать B m = 0,75 В s min

. Для никель-марганцевых ферритов это дает примерно 0,25 Тл. С учетом падения B s при повышенных температурах и за счет старения в ответственных случаях лучше подстраховаться и снизить B m до 0,2 Тл.

Основные параметры распространенных ферритов сведены в Таблицу 3.

Таблица 3. Основные параметры некоторых ферритов

Марка100НН400НН600НН1000НН2000НН2000НМ1000НМ31500НМ11500НМ3
μ нач80..120350..500500..800800..12001800..24001700..2500800..12001200..18001200..1800
fc, МГц73,51,50,40,10,51,80,71,5
Tc, ℃12011011011070200200200200
Bs, Тл0,440,250,310,270,250,38..0,40,330,35..0,40,35..0,4

Виды сердечников

Трансформаторы отличаются между собой не только сферой применения, техническими характеристиками и размерам, но и типом магнитопровода. Очень важным параметром, влияющим на величину магнитного поля, кроме отношения витков, является размер сердечника. От его значения зависит способность насыщения. Эффект насыщения наступает тогда, когда при увеличении тока в катушке величина магнитного потока остаётся неизменной, т. е. мощность не изменяется. Для предотвращения возникновения эффекта насыщения понадобится правильно рассчитать объём и сечение сердечника, от размеров которого зависит мощность трансформатора. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник.

По конструкции сердечник разделяют на три основных вида:

  • стержневой;
  • броневой;
  • тороидальный.

Стержневой магнитопровод представляет собой П-образный или Ш-образный вид конструкции. Собирается из стержней, стягивающихся ярмом. Для защиты катушек от влияния внешних электромагнитных сил используются броневые магнитопроводы. Их ярмо располагается на внешней стороне и закрывает стержень с катушкой. Тороидальный вид изготавливается из металлических лент. Такие сердечники из-за своей кольцевой конструкции экономически наиболее выгодны.

Зная форму сердечника, несложно рассчитать мощность трансформатора. Находится она по несложной формуле: P=(S/K)*(S/K), где:

  • S — площадь сечения сердечника.
  • K — постоянный коэффициент равный 1,33.

Площадь сердечника находится в зависимости от его вида, её единица измерения — сантиметр в квадрате. Полученный результат измеряется в ваттах. Но на практике часто приходится выполнять расчёт сечения сердечника по необходимой мощности трансформатора: Sс = 1.2√P, см2. Исходя из формул можно подтвердить вывод: что чем больше мощность изделия, тем габаритней используется сердечник.

Что такое коэффициент мощности

В цепи переменного тока, который поступает в трансформатор, возникает несколько видов нагрузки. Каждая из их определяет параметр, который в зависимости от нагрузки может быть активным, реактивным или полным соединением двух).

Активное сопротивление рассчитывается с учетом того, что потери будут равным квадрату тока, умноженному на сопротивление. Сопровождается выделением тепла. Реактивное происходит без выделения тепла и потерь нагрузки, рассчитывается по формулам индуктивности и емкости. Коэффициент является в общем понимании слова соотношением между активной и пассивной компонентой.

Как рассчитать коэффициент мощности трансформатора: формулы и математические расчёты

Определить его возможно по простой формуле: делятся усредненные значения модульных активных (ВТ) и полных (ВА).

При этом активная вычисляется как умноженные параметры напряжения и силы тока, умноженные на косинус фи. Для реактивной силы формула идентичная, но с тем учетом, что берется вместо косинуса синус. Полная вычисляется как умноженные напряжение на силу, равные корню из квадрата активной и реактивной.

Программы для расчета

Известно много программ, которые предлагают онлайн расчет параметров любого трансформатора на броневом или стержневом сердечнике. Одной из таких может стать сервис на сайте «skrutka». Для определения характеристик потребуется указать ряд следующих данных:

  • входное напряжение — U1;
  • выходное напряжение — U2;
  • ширину пластины — а;
  • толщину стопки — b ;
  • частоту сети — Гц;
  • габаритная мощность — В*А;
  • КПД;
  • магнитную индуктивность магнитопровода — Тл;
  • плотность тока в обмотках — А/мм кв.

Последние 4 величины являются табличными, поэтому потребуется воспользоваться справочником.

Необходимо грамотно и ответственно отнестись к расчету параметров трансформатора, потому что от качества выполненной работы будет зависеть и качество функционирования вашего блока питания. Не всегда стоит надеяться на программы, в них могут быть ошибки. Выберите один или несколько параметров и пересчитайте их вручную по ранее приведенным формулам. Если получится примерно равное значение, то результат можно считать правильным.

Литература.

  1. Косенко С. “Расчёт импульсного трансформатора двухтактного преобразователя” // Радио, №4, 2005, с. 35 — 37, 44.
  2. Эраносян С. А.Сетевые блоки питания с высокочастотными преобразователями. — Л.: Энергоатомиздат. Ленингр. отд-ние, 1991,- 176 с: ил.
  3. С. В. Котенёв, А. Н. Евсеев. Расчет и оптимизация тороидальных трансформаторов и дросселей. — М.: Горячая линия-Телеком, 2013. — 359 с.: ил.
  4. А. Петров «Индуктивности, дроссели, трансформаторы «// Радиолюбитель, №12, 1995, с.10-11.
  5. Михайлова М.М., Филиппов В.В., Муслаков В.П. Магнитомягкие ферриты для радиоэлектронной аппаратуры. Справочник. — М.: Радио и связь, 1983. — 200 с., ил.
  6. Расчетные геометрические параметры кольцевых сердечников.
  7. Б.Ю.Семенов. Силовая электроника для любителей и профессионалов. М. : Солон-Р, 2001. — 327 с. : ил

Различные типы трансформаторного оборудования применяются в электронных и электротехнических схемах, которые востребованы во многих сферах хозяйственной деятельности. Например, импульсные трансформаторы (далее по тексту ИТ) – важный элемент, устанавливаемый практически во всех современных блоках питания.

Расчет трансформатора онлайн

Существует формула расчета трансформатора, которая помогает совершить расчет трансформатора питания. Чтобы упростить себе жизнь и избежать ошибок в вычислениях, вы можете воспользоваться данной программой. Она позволит вам конструировать трансформаторы на различные напряжения и мощности очень быстро и без проблем. Это очень удобный калькулятор для радиолюбителей и профессионалов. Он поможет не только рассчитать трансформатор, но и поможет изучить его устройство, как всё работает. Это самый простой и быстрый способ всё рассчитать. Для этого нужно заполнить все известные вам данные и нажать кнопку. Получается вам нужно нажать одну кнопку, чтобы произвести расчет трансформатора!

Преимущества онлайн калькулятора

В результате расчета трансформатора онлайн, на выходе получаются параметры в виде мощности, силы тока в амперах, количества витков и диаметра провода в первичной и вторичной обмотке.

Существуют формулы, позволяющие быстро выполнить расчеты трансформатора. Однако они не дают полной гарантии от ошибок при проведении вычислений. Чтобы избежать подобных неприятностей, применяется программа онлайн калькулятора.

Полученные результаты позволяют выполнять конструирование трансформаторов для различных мощностей и напряжений. С помощью калькулятора осуществляются не только расчеты трансформатора. Появляется возможность для изучения его устройства и основных функций.

Запрошенные данные вставляются в таблицу и остается только нажать нужную кнопку.

Благодаря онлайн калькулятору не требуется проводить каких-либо самостоятельных подсчетов. Полученные результаты позволяют выполнять перемотку трансформатора своими руками.

Большинство необходимых расчетов осуществляется в соответствии с размерами сердечника. Калькулятор максимально упрощает и ускоряет все вычисления.

Необходимые пояснения можно получить из инструкции и в дальнейшем четко следовать их указаниям.

Конструкция трансформаторных магнитопроводов представлена тремя основными вариантами – броневым, стержневым и тороидальным. Прочие модификации встречаются значительно реже. Для расчета каждого вида требуются исходные данные в виде частоты, входного и выходного напряжения, выходного тока и размеров каждого магнитопровода.

Типовой расчёт параметров

Довольно часто радиолюбители используют при расчёте трансформатора упрощённую методику. Она позволяет выполнить расчёт в домашних условиях без использования величин, которые трудно узнать. Но проще использовать готовый для расчёта трансформатора онлайн-калькулятор. Для того чтобы воспользоваться таким калькулятором, понадобится знать некоторые данные, а именно:

  • напряжение первичной и вторичной обмотки;
  • габаритны сердечника;
  • толщину пластины.

После их ввода понадобится нажать кнопку «Рассчитать» или похожую по названию и дождаться результата.

Стержневой тип магнитопровода

В случае отсутствия возможности расчёта на калькуляторе выполнить такую операцию самостоятельно несложно и вручную. Для этого потребуется определиться с напряжением на выходе вторичной обмотки U2 и требуемой мощностью Po. Расчёт происходит следующим образом:

После того как первый этап выполнен, приступают к следующей стадии расчёта. Число витков в первичной обмотке находится по формуле: K1 = 50*U1/S. А число витков вторичной обмотке определяется выражением K2= 55* U2/S, где:

  • U1 — напряжение первичной обмотке, В.
  • S — площадь сердечника, см².
  • K1, K2 — число витков в обмотках, шт.

Остаётся вычислить диаметр наматываемой проволоки. Он равен D = 0,632*√ I, где:

  • d — диаметр провода, мм.
  • I — обмоточный ток рассчитываемой катушки, А.

Как рассчитать количество витков первичной обмотки?

Да сих пор мы исходили из посыла, что первичная обмотка цела. А что делать, если она оказалась оборванной или сгоревшей дотла?

Оборванную обмотку можно размотать, восстановить обрыв и намотать заново. А вот сгоревшую обмотку придётся перемотать новым проводом.

Конечно, самый простой способ, это при удалении первичной обмотки посчитать количество витков.

Если нет счётчика, а Вы, как и я, используете приспособление на основе ручной дрели, то можно вычислить величину редукции дрели и посчитать количество полных оборотов ручки дрели. До тех пор, пока мне не подвернулся на базаре счётчик оборотов, я так и делал.

Но, если обмотка сильно повреждена или её вообще нет, то можно рассчитать количество витков по приведённой формуле. Эта формула валидна для частоты 50 Герц.

ω = 44 / (T * S)

ω – число витков на один вольт,

44 – постоянный коэффициент,

T – величина индукции в Тесла,

S – сечение магнитопровода в квадратных сантиметрах.

Пример.

Сечение моего магнитопровода – 6,25см².

Магнитопровод витой, броневой, поэтому я выбираю индукцию 1,5 Т.

44 / (1,5 * 6,25) = 4,693 вит./вольт

Определяем количество витков первичной обмотки с учётом максимального напряжения сети:

4,693 * 220 * 1,05 = 1084 вит.

Допустимые отклонение напряжения сети принятые в большинстве стран: -10… +5%. Отсюда и коэффициент 1,05.

Величину индукции можно определить по таблице.

Тип магнитопроводаМагнитная индукция max (Тл) при мощности трансформатора (Вт)
5-1515-5050-150150-300300-1000
Броневой штампованный1,1-1,31,31,3-1,351,351,35-1,2
Броневой витой1,551,651,651,651,65
Тороидальный витой1,71,71,71,651,6

Не стоит использовать максимальное значение индукции, так как оно может сильно отличаться для магнитопроводов различного качества.

Вернуться наверх к меню

Страницы 1 2 3 4

5 Июль, 2010 (20:38) в Источники питания, Сделай сам, Технологии

Расчет сетевого трансформатора

  • Если у Вас есть некий трансформаторный сердечник, из которого нужно сделать трансформатор, то необходимо замерить сердечник (как показано на рисунке), а так же замерить толщину пластины или ленты.
  • Первым делом необходимо рассчитать площадь сечения сердечника — Sc (см²) и площадь поперечного сечения окна — Sо (см²).
  • Для тороидального трансформатора:
  • Sc= H * (D – d)/2
  • S0= π * d2/ 4

Для Ш и П — образного сердечника:

Определим габаритную мощность нашего сердечника на частоте 50 Гц:

  • η — КПД трансформатора,
  • Sc — площадь поперечного сечения сердечника, см2,
  • So — площадь поперечного сечения окна, см2,
  • f — рабочая частота трансформатора, Гц,
  • B — магнитная индукция, T,
  • j — плотность тока в проводе обмоток, A/мм2,
  • Km — коэффициент заполнения окна сердечника медью,
  • Kc — коэффициент заполнения сечения сердечника сталью.

При расчете трансформатора необходимо учитывать, что габаритная мощность трансформатора должна быть больше расчетной электрической мощности вторичных обмоток.

Исходными начальными данными для упрощенного расчета являются:

  • напряжение первичной обмотки U1
  • напряжение вторичной обмотки U2
  • ток вторичной обмотки l2
  • мощность вторичной обмотки Р2 =I2 * U2 = Рвых
  • площадь поперечного сечения сердечника Sc
  • площадь поперечного сечения окна So
  • рабочая частота трансформатора f = 50 Гц

КПД (η) трансформатора можно взять из таблицы, при условии что Рвых = I2 * U2 (где I2 ток во вторичной обмотке, U2 напряжение вторичной обмотки), если в трансформаторе несколько вторичных обмоток, что считают Pвых каждой и затем их складывают.

B — магнитная индукция выбирается из таблицы, в зависимости от конструкции магнитопровода и Pвых.

j — плотность тока в проводе обмоток , так же выбирается в зависимости от конструкции магнитопровода и Pвых.

Km — коэффициент заполнения окна сердечника медью

Kc — коэффициент заполнения сечения сердечника сталью

Коэффициенты заполнения для пластинчатых сердечников указаны в скобках при изоляции пластин лаком или фосфатной пленкой.

При первоначальном расчете необходимо соблюдать условие —Pгаб ≥ Pвых, если это условие не выполняется то при расчете уменьшите ток или напряжение вторичной обмотки.

После того как Вы определились с габаритной мощностью трансформатора, можно приступить к расчету напряжения одного витка:

  1. где Sc — площадь поперечного сечения сердечника, f — рабочая частота (50 Гц), B — магнитная индукция выбирается из таблицы, в зависимости от конструкции магнитопровода и Pвых.
  2. Теперь определяем число витков первичной обмотки:
  3. w1=U1/u1
  4. где U1 напряжение первичной обмотки, u1 — напряжение одного витка.
  5. Число витков каждой из вторичных обмоток находим из простой пропорции:
  • где w1 — кол-во витков первичной обмотки, U1 напряжение первичной обмотки, U2 напряжение вторичной обмотки.
  • Определим мощность потребляемую трансформатором от сети с учетом потерь:
  • Р1 = Рвых / η
  • где η — КПД трансформатора.
  • Определяем величину тока в первичной обмотке трансформатора:
  • I1 = P1/U1
  • Определяем диаметры проводов обмоток трансформатора:
  • d = 0,632*√ I
  • где d — диаметр провода, мм, I — ток обмотки, А (для первичной и вторичной обмотки).

Как определить количество витков вторичной обмотки?

Для расчёта количества витков вторичной обмотки необходимо знать, сколько витков приходится на один Вольт. Если количество витков первичной обмотки неизвестно, то это значение можно получить одним из предложенных ниже способов.

Первый способ.

Перед удалением вторичных обмоток с каркаса трансформатора, нужно замерить на холостом ходу (без нагрузки) напряжение сети и напряжение на одной из самых длинных вторичных обмоток. При размотке вторичных обмоток, нужно посчитать количество витков той обмотки, на которой был произведён замер.

Имея эти данные, можно легко рассчитать, сколько витков провода приходится на один Вольт напряжения.

Второй способ.

Этот способ можно применить, когда вторичная обмотка уже удалена, а количество витков не посчитано. Тогда можно намотать в качестве вторичной обмотки 50 -100 витков любого провода и сделать необходимые замеры. То же самое можно сделать, если используется трансформатор, имеющий всего несколько витков во вторичной обмотке, например, трансформатор для точечной сварки. Тогда временная измерительная обмотка позволит значительно увеличить точность расчётов.

Когда данные получены, можно воспользоваться простой формулой:

ω1 / U1 = ω 2 / U2

ω 1 – количество витков в первичной обмотке,

ω 2 – количество витков во вторичной обмотке,

U1 – напряжение на первичной обмотке,

U2 – напряжение на вторичной обмотке.

Пример:

Я раздобыл вот такой трансформатор без вторичной обмотки и опознавательных знаков.

Намотал в качестве временной вторичной обмотки – 100 витков.

Намотал я эту обмотку тонким проводом, который не жалко и которого у меня больше всего. Намотал «в навал», что значит, как попало.

Результаты теста.

Напряжение сети во время замера – 216 Вольт.

Напряжение на вторичной обмотке – 20,19 Вольт.

Определяем количество витков на вольт при 216V:

100 / 20,19 = 4,953 вит./Вольт

Здесь на точности не стоит экономить, так как погрешность набегает при замерах. Благо, считаем-то не на бумажке.

Рассчитываем число витков первичной обмотки:

4,953 * 216 = 1070 вит.

Теперь можно определить количество витков на вольт при 220V.

1070 / 220 = 4,864 вит./Вольт

Рассчитываем количество витков во вторичных обмотках.

Для моего трансформатора нужно рассчитать три обмотки. Две одинаковые «III» и «IV» по 12,8 Вольт и одну «II» на 14,3 Вольта.

4,864 * 12,8 = 62 вит.

4,864 * 14,3 = 70 вит.

Вернуться наверх к меню

Расчёт трехфазного трансформатора

Изготовление трехфазного трансформатора и его точный расчёт процесс более сложный, так как здесь первичная и вторичная обмотка состоят уже из трёх катушек. Это разновидность силового трансформатора, магнитопровод которого выполнен чаще всего стержневым способом. Здесь уже появляются такие понятие, как фазные и линейные напряжения. Линейные измеряются между двумя фазами, а фазные между фазой и землёй. Если трансформатор трехфазный рассчитан на 0,4 кВ, то линейное напряжение будет 380В, а фазное 220 В. Обмотки могут быть соединены в звезду или треугольник, что даёт разные величины токов и напряжений.

Обмотки трехфазного трансформатора расположены на стержнях так же, как и в однофазном, т. е. обмотки низшего напряжения НН размещаются ближе к стержню, а обмотки высшего напряжения ВН — на обмотках низшего напряжения.

Высоковольтные трансформаторы трёхфазного тока рассчитываются и изготавливаются исключительно в промышленных условиях. Кстати, любой понижающий трансформатор при обратном включении, выполняет роль повышающего напряжение устройства.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]