Покрытие электродов: основное, рутиловое, кислое, целлюлозное


Главная / Расходные материалы

Назад

Время на чтение: 13 мин

0

304

  • Какие бывают электроды
  • Основное покрытие электродов — характеристики
  • Из истории покрытий
  • Назначение покрытия электродов Какие функции обеспечивает качественное покрытие
  • Основные виды покрытия электродов
  • Покрытия электродов сварочных для ручной дуговой сварки: типы, состав, обозначения
      Диаметр покрытия
  • Толщина покрытия
  • Лучшие электроды с основным покрытием
  • Дополнительные виды электродов
      Неплавящиеся электроды
  • Плавящиеся электроды
  • Электроды из цветмета
  • Как наносится покрытие
  • Критерии отбора
  • Покупка электродов: как определить качество
  • Маркировка электродов
  • Требования к электродам
  • Применение
  • Какие бывают электроды

    Электроды, применимые для работ с ручной дуговой сваркой разделяются на плавящиеся и неплавящиеся. Стержни, плавящиеся при сварке, изготавливают из чугуна, стали, меди или другого металла, в зависимости от материала. Они играют роль анода или катода, а также выполняют функцию присадочного материала. Бывают покрытые или непокрытые.

    Покрытие в плавящихся стержнях выполняет много функций от удержания дуги, до формирования газового облака, препятствующего окислению шва. Неплавящиеся электроды для сварки, изготавливают из различных тугоплавких материалов – графит, вольфрам или уголь. Служат они для розжига и удержания дуги, а заполнение шва присадками выполняется с помощью ручной подачи плавкого материала.

    Про металлообработку

    Обработка резьбовых поверхностей — это операция, которая осуществляется посредством снятия слоя материала (стружки) с обрабатываемой поверхности или без снятия стружки, т. е. пласти­ческим деформированием. В первом случае речь идет о нарезании резьбы, а во втором — о ее накатывании. При сборке и ремонте оборудования и проведении монтажных работ применяется нарезание или накатывание резьбы вручную или с помощью ручных механизированных инструментов.

    Резьбовой стержень, имеющий на всей длине или на некоторой ее части винтовую поверхность, называют винтом, а отверстие, имеющее винтовую поверхность, — гайкой.

    Элементы резьбы (рис. 1) — определенные числовые пара­метры, характеризующие резьбу.

    Шаг резьбы Р — это расстояние в миллиметрах между верши­нами двух соседних витков резьбы, измеренное параллельно ее оси.

    Высота профиля Н — расстояние от вершины резьбы до осно­вания профиля, измеренное в направлении, перпендикулярном оси резьбы.


    Рис. 1. Элементы треугольной резьбы: α — угол профиля; Р — шаг резьбы; d — на­ружный диаметр резьбы; d1 — внутренний диаметр резьбы; d2 — средний диаметр резьбы; Н — высота профиля резьбы

    Рис. 3.24. Элементы треугольной резьбы: а — угол профиля; Р — шаг резьбы; d — на­ружный диаметр резьбы; d1 — внутренний диаметр резьбы; d2 — средний диаметр резьбы; Н — высота профиля резьбы

    Угол профиля α — угол между прямолинейными участками сто­рон профиля резьбы.

    Наружный диаметр резьбы d — это наибольший диаметр резь­бы, который измеряют по ее вершинам в направлении, перпенди­кулярном оси.

    Внутренний диаметр резьбы — это наименьшее расстояние между противоположными впадинами резьбы, измеренное пер­пендикулярно оси.

    Средний диаметр резьбы d2 — это диаметр условной окружно­сти, проведенной посередине профиля резьбы между дном впади­ны и вершиной выступа, измеренный в направлении, перпендику­лярном оси.

    Инструменты и приспособления для нарезания наружной и внутренней резьбы вручную. Для нарезания наружной и внутрен­ней резьбы вручную применяют специальные резьбонарезные инструменты (метчики и плашки) и приспособления, позволя­ющие создать вращающий момент на инструменте, необходимый для обеспечения сил резания в процессе обработки.

    Метчик (рис. 2) состоит из двух частей: рабочей, которая обе­спечивает процесс резания, и хвостовой, на конце которой выпол­нен квадратный выступ для установки воротка. Рабочая часть мет­чика включает в себя режущую (заборную) часть, которая обеспе­чивает удаление основного припуска на обработку, и калибрующую, осуществляющую окончательную обработку резьбы. Метчики для ручного нарезания резьбы изготавли­вают в виде комплектов из двух-трех штук (черновой, средний и чистовой), которые помечают круговыми риска­ми на хвостовой части (одна, две и три риски соответственно).


    Рис. 2. Метчик: 1 — нитка (виток); 2 — квадрат; 3— хвостовик; 4 — канавка

    Для создания крутящего момента на режущем инструменте (метчике) применяют специальные приспосо­бления — воротки различных кон­струкций.

    Универсальный вороток (рис. 3) представляет собой рам­ку с двумя сухарями — подвижным и неподвижным, образующи­ми квадратное отверстие и обеспечивающими закрепление хво­стовой части метчика.


    Рис. 3. Раздвижной вороток: 1 — рамка; 2 — муфта; 3 — рукоятка; 4, 5 — соответственно подвижный и непо­движный сухарь; а — сторона квадрата

    Вороток с выключающимися кулачками (предохранительный) (рис. 4, а) позволяет предохранять метчик от поломок за счет выведения из зацепления кулачков корпуса и втулки, когда уси­лие, передаваемое воротком, превышает допустимое.

    Торцевой вороток (рис. 4, б) применяют при нарезании резь­бы в труднодоступных местах, так как он позволяет работать одной рукой.

    Вороток с трещоткой (рис. 4, в) служит для нарезания резь­бы в труднодоступных местах, когда за один раз вороток может быть повернут на небольшой угол.


    Рис. 4. Воротки: а — предохранительный: 1 — корпус; 2 — втулка; 3 — пружина; б — торцевой; в — с трещоткой

    Плашка — инструмент для нарезания наружной резьбы, состо­ящий из двух частей: заборной и калибрующей. Их назначение такое же, как и у соответствующих частей рабочей части метчика. При ручном нарезании резьбы применяют плашки различных конструкций.

    Круглые плашки (рис. 5, а) представляют собой резьбовое кольцо с несколькими канавками для образования режущих кро­мок и отвода стружки. Их изготавливают цельными и разрезными. Благодаря своим пружинящим свойствам плашки позволяют регу­лировать величину среднего диаметра нарезаемой резьбы.

    Квадратные плашки (рис. 5, б) состоят из двух половин, ко­торые укрепляют в специальной рамке с рукоятками — клуппе.

    Клупп обеспечивает возможность регулирования среднего диаме­тра нарезаемой резьбы.


    Рис. 5. Резьбонарезные плашки: а — круглая: 1 — заборная часть; 2 — калибрующая часть; 3 — стружечная канавка; б — квадратная (раздвижная): 1 — клупп; 2 — плашка

    Для создания вращательного момента и обеспечения процесса резания при нарезании наружной резьбы плашками применяют специальные приспособления — воротки (для круглых плашек) и клуппы (для разрезных плашек).

    Вороток для круглых плашек (рис. 6) представляет собой кру­глую рамку с выточкой, в которой помещается круглая плашка, удер­живаемая от проворачивания при помощи трех стопорных винтов. Четвертый винт позволяет регулировать средний диаметр резьбы при применении для ее нарезания разрезной круглой плашки.


    Рис. 6. Вороток для круглых плашек.

    Клупп (см. рис. 5, б) представляет собой квадратную рамку с выступами, в которые входят пазы плашки. Одну из половин плашки можно перемещать при помощи винта, регулируя величину среднего диаметра нарезаемой резьбы.

    Ручной механизированный инструмент для нарезания вну­тренней резьбы может быть оснащен как пневматическим, так и электрическим приводом.

    Резьбонарезатель с пневматическим приводом (рис. 7) пред­назначен для нарезания резьбы небольшого диаметра. Пневмати­ческий двигатель 1 приводит во вращение шпиндель 4. При нажа­тии на рукоятку 3 корпуса происходит нарезание резьбы. При ослаблении нажатия на рукоятку 3 шпиндель 4 под воздействием пружины смещается и происходит реверсирование его движения. При этом метчик 5 ускоренно вывинчивается из отверстия заго­товки 6. Включение инструмента осуществляется нажатием на ку­рок 2.


    Рис. 7. Резьбонарезатель с пневматическим приводом: 1 — пневмодвигатель; 2 — курок; 3 — рукоятка; 4 — шпиндель; 5 — метчик; 6 — заготовка

    Резьбонарезатель с электрическим приводом (рис. снаб­жен встроенным электрическим двигателем, реверсивным меха­низмом и редуктором.


    Рис. 8. Резьбонарезатель с элек­трическим приводом

    Подготовка стержней и отверстий под нарезание резьбы. В процессе нарезания резьбы происходит не только удаление слоя материала с поверхности заготовки, но и пластическое деформирование обрабатываемой по­верхности, которое сопровождается выдавливанием части металла заготовки из впадин витков резьбы к вершинам. Это явление должно учитываться при определении диаметров стержней и отверстий под нарезание резьбы. Поэтому размеры заготовок целесообразно определять при помощи справочных таблиц, в которых они приводятся с уче­том всех факторов, влияющих на процесс резания.

    На практике диаметр отверстия под резьбу выбирают равным ее номинальному размеру, уменьшенному на величину шага. На­пример при нарезании резьбы М10 диаметр отверстия должен быть 10 — 1,5 = 8,5 мм.

    При нарезании наружной резьбы диаметр стержня должен быть меньше номинального диаметра резьбы на 0,1 …0,2 мм в за­висимости от ее размера.

    При обработке наружной и внутренней резьбы необходимо придерживаться ряда правил.

    1. Нарезание резьбы вручную необходимо выполнять при обильном смазывании метчика или плашки машинным маслом.
    2. При нарезании резьбы вручную следует периодически сре­зать образующуюся стружку обратным ходом метчика или плаш­ки на 1/2 оборота.
    3. После нарезания резьбы необходимо произвести контроль ее качества: внешним осмотром (не допуская задиров и сорванных ниток) и резьбовым калибром, проходная часть которого должна навинчиваться легко, от руки.

    Правила нарезания наружной резьбы вручную сводятся к следу­ющему.

    1. Проверить перед нарезанием резьбы диаметр стержня, который должен быть меньше номинального размера резьбы на 0,1 …0,2 мм.
    2. Выполнить на вершине стержня заборную фаску таким об­разом, чтобы она была концентрична оси стержня. При этом ее диаметр не должен быть меньше внутреннего диаметра резьбы, а угол наклона относительно оси стержня должен составлять 60°.
    3. Следует закреплять стержень в тисках прочно, проверяя его перпендикулярность зажимным губкам при помощи угольника.

    Правила обработки внутренней резьбы вручную следующие.

    1. Проверить соответствие диаметра отверстия размеру наре­заемой резьбы.
    2. Проверить соответствие глубины отверстия требованиям чертежа при нарезании глухой резьбы.
    3. Проверить при помощи угольника перпендикулярность оси мет­чика плоскости заготовки, в отверстии которой нарезается резьба.
    4. Использовать при нарезании резьбы все метчики комплекта.
    5. Периодически очищать от стружки глухие отверстия при на­резании в них резьбы.

    Нарезание резьбы на трубах осуществляется с применением специальных инструментов — клуппов и резьбонарезных гребе­нок.

    Клупп с раздвижными плашками (рис. 9) — устройство, наи­более часто применяемое для нарезания наружной резьбы на тру­бах. Клупп комплектуют набором раздвижных плашек для нареза­ния резьбы диаметром 1/2…3/4; 1…11/4; и 11/2 …2″. Клупп смонтиро­ван таким образом, что перемещающиеся в его корпусе 1 четыре плашки 5 могут одновременно приближаться к центру или расхо­диться от него. Перемещение плашек обеспечивается специаль­ным поворотным устройством, приводимым в действие рукоят­кой 4. Точная установка плашек на размер нарезаемой резьбы производится по лимбу, размещенному на корпусе, а установоч­ные перемещения осуществляются за счет червячной передачи 3. После установки положение плашек фиксируют специальным устройством — «собачкой». Усилие резания передается на инстру­мент при помощи рукояток 2.


    Рис. 9. Клупп для нарезания трубных резьб: 1 — корпус; 2 — рукоятки; 3 — червячная передача; 4 — рукоятка перемещения плашек; 5 — плашки

    Круглая резьбонарезная гребенка (рис. 10, а) применяется для нарезания трубной резьбы на токарных и сверлильных станках. Гребенки выпускаются комплектами из четырех штук. Нарезание резьбы производится с применением специальной винторезной самооткрывающейся головки (рис. 10, б).


    Рис. 10. Круглая резьбонарезная гребенка (а) и самооткрывающаяся головка для ее крепления (б)

    Для облегчения работы инструмента, повышения качества по­лучаемой при нарезании резьбы применяют СОТС. Их выбор за­висит от материала обрабатываемой заготовки. Например, для охлаждения стальных заготовок (конструкционная, инструмен­тальная и легированная сталь) применяют эмульсию. Для охлаж­дения чугуна и алюминия следует использовать керосин. Нареза­ние резьбы в медных, латунных и бронзовых заготовках может производиться без охлаждения.

    Основное покрытие электродов — характеристики

    Любое электродное покрытие представляет из себя смесь измельчённых компонентов и связующего вещества. Порошкообразная смесь наносится на металлический стержень и служит для защиты от различных факторов внешнего воздействия.
    Основное покрытие обозначается буквой «Б». Производится такая смесь из карбонатов кальция и магния. К ним относятся такие элементы, как мрамор, магнезит, доломит. В качестве разбавителя шлака к перечисленным минералам добавляют также плавиковый шпат (CaF2). Поэтому их также называют электроды с фтористо-кальциевым покрытием.

    Характеристики:

    • Газозащитная среда, которая образуется в процессе сварки, почти полностью состоит из CO и CO2.
    • Низкое содержание водорода позволяет формировать прочные швы без риска появления трещин.
    • Низкое содержание кислорода и различных примесей (например, серы и фосфора) в металле шва.
    • Работу в большинстве случаев следует вести на постоянном токе. Наличие пластикового шпата в составе покрытия ухудшает работу электродов с переменным током. Поэтому чаще всего нужен постоянный ток обратной полярности.

    Билеты экзамена для проверки знаний специалистов сварочного производства 1 уровень

    БИЛЕТ 9

    ВОПРОС 1. При сварке каких, перечисленных ниже, сталей более вероятно появление холодных трещин?

    1. С содержанием углерода до 0,25 %.

    2. С содержанием углерода более 0,4 %.

    3. С содержанием углерода от 0,25 % до 0,35 %.

    ВОПРОС 2. Какой буквой русского алфавита обозначают углерод и цирконий в маркировке стали?

    1. Наличие углерода буквой не обозначают, цирконий-Ц.

    2. Углерод -У , цирконий — не обозначают.

    3. Углерод — С, цирконий — К.

    ВОПРОС 3. Какие стали относятся к сталям аустенитного класса?

    1. 08Х18Н9, 03Х16Н9М2, 10Х17Н13М2Т.

    2. 08Х13, 05Х12Н2М, 08Х14МФ.

    3. 12МХ, 12ХМ, 20ХМА.

    ВОПРОС 4. Какая физическая величина определяется при статическом изгибе? (I — IV)

    1. Предел прочности при изгибе.

    2. Ударную вязкость при изгибе.

    3. Угол загиба.

    ВОПРОС 5. Какую форму статической характеристики должен иметь источник питания для РДС?

    1. Крутопадающую.

    2. Жесткую.

    3. Возрастающую.

    ВОПРОС 6. Что следует контролировать при проверке состояния и размеров сварочных электродов?

    1. Длину непокрытой части электрода.

    2. Длину электрода.

    3. Диаметр металлического стержня, толщину покрытия и равномерность его нанесения.

    ВОПРОС 7. Что обозначает в маркировке электродов буква «Э» и цифры, следующие за ней?

    1. Марку электрода и номер разработки.

    2. Завод-изготовитель и номер покрытия.

    3. Тип электрода и гарантируемый предел прочности наплавленного ими металла в кгс/мм2.

    ВОПРОС 8. Какова роль легирующих элементов в электродном покрытии?

    1. Придают наплавленному металлу специальные свойства.

    2. Обеспечивают хорошую отделимость шлаковой корки.

    3. Снижают степень разбрызгивания жидкого металла.

    ВОПРОС 9. Электроды каких марок имеют основное покрытие?

    1. АНО-3, АНО-6, МР-3.

    2. УОНИИ 13/45, УОНИИ 13/55, СМ-11.

    3. АНО-7, АНО-8.

    ВОПРОС 10. Укажите, род (переменный или постоянный) и полярность тока (прямая или обратная), , рекомендуемые для выполнения ручной дуговой сварки электродами с целлюлозным покрытием.

    1. На постоянном токе, прямой полярности.

    2 . На постоянном токе, обратной полярности.

    3. На переменном токе.

    ВОПРОС 11. Когда образуются горячие трещины?

    1. Через несколько минут после остывания сварного соединения ниже температуры 1000С.

    2. Во время кристаллизации металла шва.

    3. Через некоторое время после остывания сварного соединения до комнатной температуры.

    ВОПРОС 12. Укажите причины образования шлаковых включений при РДС?

    1. Неправильный выбор режимов сварки, применение некачественных электродов, плохая зачистка поверхности предыдущего слоя сварного шва.

    2. Применение электродов с толстой обмазкой, сварка без разделки кромок.

    3. Сварка при повышенной влажности окружающего воздуха, или при низкой температуре.

    ВОПРОС 13. Как исправить швы с подрезом глубиной более 15% от толщины кромки?

    1. Механическим способом удалить металл в районе подреза и наложить ниточный шов.

    2. Место подреза заплавить ниточным швом.

    3. Сделать плавный переход механической выборкой от наплавленного валика к основному металлу.

    ВОПРОС 14. Какие из приведенных ниже групп сталей относятся к высокохромистым?

    1. 03Х16Н9М2, 08Х18Н10, 10ХН1М.

    2. 08Х13, 06Х12Н3Д, 1Х12В2МФ.

    3. 10Х2М, 20ХМА.

    ВОПРОС 15. Каким инструментом пользуются при визуальном и измерительном контроле для обнаружения недопустимых поверхностных тещин в сварном шве?

    1. Шаблоном сварщика.

    2. Лупой и линейкой.

    3. Измерительным микроскопом.

    ВОПРОС 16. Что способствует появлению пор в металле шва?

    1. Сильный ветер при сварке на открытой площадке.

    2. Высокая скорость сварки.

    3. Слишком малый зазор в стыке.

    ВОПРОС 17. Кто подключает сварочный источник питания к распределительному щиту?

    1. Бригадир сварочной бригады или мастер.

    2. Сварщик, сдавший экзамен по правилам электробезопасности.

    3. Дежурный электрик.

    ВОПРОС 18. Чем обусловлено появление непроваров в корне шва?

    1. Малым зазором в стыке при сборке под сварку.

    2. Чрезмерным углом разделки кромок.

    3. Завышением силы сварочного тока при сварке.

    ВОПРОС 19. С какого возраста сварщики допускаются к выполнению сварочных работ?

    1. С 16 лет.

    2. С 18 лет.

    3. С 20 лет.

    ВОПРОС 20. От чего зависит выбор плотности защитного стекла для сварочной маски при РДС?

    1. От остроты зрения сварщика.

    2. От величины сварочного тока.

    3. От величины сварочного тока и напряжения на дуге.

    Для перехода на следующую страницу, воспользуйтесь постраничной навигацией ниже
    Страницы: 9

    Из истории покрытий

    Разработку качественных электродных покрытий и их промышленное освоение можно отнести к крупнейшим научно-техническим достижениям, сыгравшим огромную роль в развитии мировой техники. Несмотря на то, что первый патент на покрытие электродов был получен основателем компании ESAB Оскаром Кельбергом еще в 1906 году, в СССР к производству покрытых электродов приступили только в 30-ые годы XX века. Вначале применялись электроды с тонким покрытием, выполняющим единственную роль — стабилизатора сварочной дуги. В него входило всего два компонента — порошкообразный мел и жидкое стекло. Мел обеспечивал ионизацию дуги, жидкое стекло одновременно с функцией ионизации исполняло также роль связующего компонента.

    Сварка электродом с меловой обмазкой хотя и делала возможным сваривание металла в принципе, но не обеспечивала защиту расплавленной ванны от атмосферных газов. Швы, выполненные такими электродами, имели содержание азота в 50 раз, кислорода в 5-10 раз больше, чем основной металл. При этом содержание углерода в наплавленном металле уменьшалось в 4 раза. Все это делало возможным использования меловых электродов только для сварки неответственных конструкций. Выпуск электродов с многокомпонентными покрытиями, обеспечивающими вместе со стабилизацией дуги и защиту сварочной ванны от атмосферных газов, начался в СССР только в 1935 году.

    Электроды с целлюлозным покрытием (символ Ц)

    До 50% состава электродов с целлюлозным видом покрытия занимают органические составляющие, как правило, целлюлоза. Также в него могут входить органические смолы, ферросплавы, тальк и прочие вещества.

    Металл шва, полученный при использовании целлюлозных электродов по химическому составу соответствует полуспокойной или спокойной стали. При этом он содержит повышенное количество водорода. По механическим свойствам металла шва электроды с этим покрытием соответствуют типам Э42, Э46 и Э50 по ГОСТ 9467-75 и обладают пределом прочности до 412 МПа, 451 МПа и 490 МПа соответственно.

    Их главной особенностью является возможность выполнения вертикальных швов на спуск (сверху вниз). Это достигается за счет образования малого количества шлака, который не стекает вниз, а также большого количества защитных газов. При односторонней сварке на весу для электродов с целлюлозным видом покрытия характерно образование равномерного обратного валика шва.

    Следует отметить, что эти электроды обладают повышенным количеством брызг и пониженной пластичностью металла шва, обусловленной большим количеством водорода, образующегося при сгорании органических компонентов.

    Плюсы электродов с целлюлозным покрытием

    • Легкое зажигание и стабильное горение дуги
    • Возможность выполнять сварочные работы как на постоянном, так и на переменном токе
    • Легкое отделение шлака
    • Возможность сварки во всех пространственных положениях
    • Отличная защита сварочной ванны
    • Отсутствие выброса опасных токсинов
    • Чистый корневой шов

    Минусы электродов с целлюлозным покрытием

    • Сильные брызги металла
    • Чешуйчатый поверхностный шов
    • Высокое содержание водорода в защитном газе
    • Склонность к небольшим подрезам по краям (трещинам)
    • Необходимо прокалить электроды перед началом работы

    Области применения

    Электроды из целлюлозы применяют при сварке низколегированных сталей. Эффективны при сварке корневого шва магистральных трубопроводов.

    Назначение покрытия электродов

    Основная задача, которую возлагают производители на покрытие электродов для ручной дуговой сварки – это защита плавящегося металла. Они предохраняют плавящийся металл от взаимодействия с воздухом, предотвращая окисление, делают готовый шов качественным и прочным.

    При работе со сварочным аппаратом защитная обмазка создает оболочку из шлака на капельках электродного металла, продвигающегося по дуговому промежутку, а также на плавящейся поверхности привариваемых друг к другу деталей.

    Защитный слой из шлака снижает скорость, с которой остывает металл, и быстроту его отвердевания, благодаря чему из него успевают выйти газовые и другие включения, которые негативно сказываются на прочности конструкции. Как правило, защитное напыление состоит из целого комплекса шлакообразующих элементов, таких как каолин или концентрат титана.

    Какие функции обеспечивает качественное покрытие

    Обмазка, покрывающая стержни из металла, выполняет целый ряд основных и второстепенных задач. Из первостепенных можно выделить:

    • Предохранение самой дуги и металла в области сварочной ванны от взаимодействия с присутствующими в составе атмосферы азота, кислорода, а также водорода, который содержится в паре воды. Обмазка стержня создает двухступенчатую защиту: пары углекислого газа и углеродных окисей, обволакивающие рабочий участок, и пленку шлака на поверхностном слое расплавленного металла;
    • обеспечение качественной кристаллизации шва без образования пор, зашлаковки и трещин.

    Второстепенные, но не менее важные задачи:

    • обеспечение бесперебойного горения дуги в широком спектре режимов работы, упрощение процесса зажигания. Стабильность дуги реализуется за счет присутствия в поверхностном слое стержня компонентов, которые не склонны к ионизации в большом объеме. Это способствует увеличению количества ионов, стабилизирующих горение, в дуговом пространстве;
    • удаление из металла сварочной ванны растворенного в нем кислорода. Для этого в состав обмазки добавляют ферросплавы, которые легче и быстрее, чем сам металл, вступают с кислородом в реакцию;
    • очистка металла шва от примесей (рафинирование).

    Из чего состоит покрытие электрода.

    Для создания электродного покрытия, с заданными свойствами, используются различные ингредиенты и их сочетания. Все их можно разделить на категории по той роли, которую они выполняют при сварке.


    Основное составляющее электродного покрытия

    1. Газообразующие. Создают при сварке газовое облако вокруг дуги. Этот газ не даёт проникнуть в металл кислороду, водороду и азоту из атмосферы. К этой категории можно причислить: целлюлозу, пищевую муку, древесную муку, декстрин, крахмал и карбонаты.
    2. Шлакообразующие. Формируют шлаковый слой, который защищает металл от атмосферы и замедляет его остывание. Сюда относят: доломит, мрамор, каолин, марганцевую руду, кварцевый песок, мел, полевой шпат, титановый концентрат и другие вещества, способные преобразовываться в шлак.
    3. Легирующие. Эти добавки придают металлу шва особенные свойства: прочность, пластичность, стойкость к окислению, высоким и низким температурам. Среди таких веществ: вольфрам, молибден, титан, марганец, никель, ванадий и хром.
    4. Раскисляющие. Кислород в сварных соединениях приводит к повышению хрупкости металла. Убрать его можно, если добавить в расплавленный металл алюминий, кремний, титан или марганец.
    5. Стабилизирующие. Их можно было бы отнести и к газообразующим, так как они тоже выделяют газ. Но этот газ предназначен не для защиты сварочной ванны, а для поддержания горения дуги. Сюда входят хромат, селитра, поташ и другие калиевые соединения.
    6. Связующие. Назначение этих компонентов обмазки — соединение элементов покрытия друг с другом и со сварочной проволокой. Наибольшее распространение в качестве связующего компонента получило жидкое стекло.
    7. Формующие. Улучшают пластические свойства покрытия, что важно при машинном способе нанесения обмазки. К этим веществам относятся каолин, бентонит и другие.

    Для увеличения эффективности сварочного процесса в состав покрытия для электрода может добавляться железный порошок.

    Некоторые ингредиенты могут выполнять не одну, а несколько функций: например, создавать защитное газовое облако, поддерживающее горение дуги, а затем обращаться в шлак, защищающий металл шва.

    Основные виды покрытия электродов

    Для ручной сварки используются 4 вида покрытий поверхности электродов, которые определяются по маркировке (буквы А, Б, Р, Ц). Рассмотрим особенности их состава и применения.

    1. Кислые (А)

    Состоят из окислов железа и марганца, кремнезема, ферромарганца, целлюлозы, крахмала. Они образуют стабильно горящую дугу и обеспечат ее быстрый розжиг при питании с невысоким напряжением. Электропитание осуществляется током переменного или постоянного типа. Малочувствительны к проржавевшим кромкам, которые сплавляются. Из минусов – вредные испарения при нагревании, разбрызгивание расплавленного вещества. Для такой разновидности материалов не допускается температурная прокалка перед использованием. Низкая отделяемость шлака может повлечь за собой (при нескольких слоях) зашлаковку наплавки. Основная область применения – сплавка низколегированной стали. Для чугуна рекомендуются расходники ОЗЧ-2, для молибденовых сплавов – ЦЛ-6.

    2. Основные или фтористо-кальциевые (Б)

    В состав входят карбонаты кальция и магния, плавкого шпата, ферромарганец. Благодаря слабому окислению, они обеспечивают выход кислорода из расплавленного материала. Применение расходного материала способствует защите от образования трещинок на швах, максимальная эффективность достигается при электросварке жестких конструкций с несколькими слоями. Лучшими с таким покрытием считаются японские Kobelco LB-52U, отечественные УОНИ 13/55, ОЗЛ-8 и FUBAG FB 13/55 .


    Чтобы поддерживать стабильное горение дуги, потребуется источник постоянного тока обратной полярности. При переменном токе шпат, который входит в состав, создает неравномерное горение. К недостаткам можно отнести восприимчивость к влаге, поэтому расходники нужно хранить в сухом месте и прокаливать непосредственно перед использованием. Края конструкций предварительно нужно очищать от ржавчины, чтобы в швах не появились поры.

    3. Рутиловые (Р)

    Содержат добавку диоксида титана (рутила), карбонаты кальция и магния, ферромарганец, кремнезем. Из доступных вариантов можно рассмотреть Fubag FB 3 . Расходники дают хорошие результаты при спайке ржавых участков, соединении загрунтованных элементов без образования пор. Ровный стойкий шов получается даже у сварщиков с небольшим опытом, предварительная шлифовка кромки не требуется. Допускается сплавка в любом положении конструкции. Брызги расплава практически отсутствуют.

    4. Целлюлозные (Ц)

    Расходники применяются в большинстве случаев для сварки трубопроводов, транспортирующих жидкости. Они не подходят для условий, когда планируется транспортировка при высоких температурах. Электроды можно использовать повторно. Перед использованием стержни обязательно нужно подвергать просушке и прокалке.

    К органическим веществам (до 50% оксицеллюлозы, крахмала) добавляются шлакообразующие материалы и легирующие присадки (ферромарганец, силикаты, диоксид титана). Они дают хорошее горение дуги при постоянном токе питания, позволяют сварщикам развивать высокую производительность за счет легкости ведения шва. Сварка может выполняться в любом положении. В процессе выделяется немного шлака, поэтому такие расходники удобно применять при вертикальном размещении конструкции. Они подходят также для труднодоступных мест. Из минусов – грубочешуйчатая поверхность швов, поэтому понадобится дополнительная шлифовка. При работе разбрызгивается до 15% расплавленного материала. Кроме основных обмазок, часто применяются также комбинированные виды покрытия электродов, например, кисло-рутиловые (КР) или рутилово-целлюлозныые (РЦ) расходники Fubag FB 46 .


    Чтобы определиться, электроды с каким видом покрытия нужны, следует учитывать такие факторы:

    • Толщину и состав сварной конструкции (медь, чугун, нержавеющая, низкоуглеродистая или высоколегированная сталь). Например, для высоколегированной стали оптимально подойдут расходники марок ЛМЗ-1, АНВ-1.
    • Требования по эксплуатации (предварительная прокалка, положение стержня при работе). Проще всего сварка проводится в горизонтальном положении, при вертикальном положении возможно стекание шлаков. Работу в труднодоступных местах под наклоном выполняют квалифицированные сварщики.
    • Марку применяющегося сварочного аппарата. Нередко в названии сварочного оборудования встречаются вставки, указывающие на особенности применения расходных материалов. Ярким примером станет модель IN 226 CEL , в названии которой указана возможность эффективной работы электродами с целлюлозным покрытием.

    Виды электродных покрытий

    Главная / Библиотека / Сварочные материалы / Виды электродных покрытий

    Промышленные защитные покрытия электродов для дуговой сварки преимущественно сталей по их металлургическому воздействию в сварочной ванне можно классифицировать на следующие основные виды.

    Стабилизирующее покрытие, в состав которого для повышения устойчивости горения дуги, особенно на переменном токе, вводятся химические соединения калия, натрия, а также карбонатов кальция, магния и бария.

    Наличие в покрытии солей щелочных и щелочно-земельных металлов приводит к уменьшению энергии, выделяемой на катоде. Из-за больших потерь в результате угара и разбрызгивания, малой скорости расплавления, отсутствия возможности проводить сварку на повышенных сварочных токах электроды со стабилизирующим покрытием обладают весьма низкой производительностью.

    Кислое (руднокислое) покрытие, основу которого составляют оксиды марганца, железа, кремния. Газовая защита осуществляется органическими компонентами, сгорающими в процессе плавления электрода. В качестве раскислителей в покрытие вводят ферромарганец. С энергетической точки зрения электроды с названным покрытием имеют ряд преимуществ: характеризуются достаточно высокой скоростью расплавления, обеспечивают сварку на форсированных режимах. Электроды с кислым покрытием обладают также высокой проплавляющей способностью. Они наиболее технологичны при сварке в нижнем положении, но могут быть использованы и для выполнения вертикальных и горизонтальных швов.

    Окислительное покрытие содержит преимущественно оксиды железа и различные силикаты (каолин, тальк, слюду, полевой шпат и т. д.). Большинство электродов с окислительным покрытием вообще не содержат раскислителей. В некоторые композиции вводят небольшое количество ферромарганца.

    Шлак при сварке этими электродами тяжелый, плотный, но очень хорошо отделяющийся. В большей части случаев он способен к самоотделению даже при сварке в разделку.

    Электроды с таким покрытием имеют низкую проплавляющую способность. Шлак и металлическая ванна весьма жидкотекучи. Поэтому их использование преимущественно ограничено сваркой горизонтальных или вертикальных угловых швов, а также угловых швов «в лодочку».

    В странах бывшего СССР электроды рассматриваемого вида практически не применяли. За рубежом их используют главным образом при сварке неответственных конструкций для выполнения декоративных гладких мелкочешуйчатых швов, особенно узких, т. е. в тех случаях, когда требуются невысокие характеристики механических свойств металла швов.

    Рутиловое покрытие состоит преимущественно из рутила с добавками полевого шпата, магнезита и других шлакообразующих компонентов. Вместо рутила в покрытии может содержаться 45—50% ильменита. Для создания газовой защиты в покрытие вводят органические вещества (целлюлозу, декстрин) и карбонаты.

    В качестве легирующего и раскисляющего компонента используют ферромарганец. При комплексном раскислении увеличивается склонность металла шва к образованию пор.

    В целях повышения коэффициента наплавки в покрытия этого вида часто вводится порошок железа.

    Электроды с рутиловым покрытием обладают высокими сварочно-технологическими свойствами, обеспечивают получение швов с гладкими и плавными очертаниями во всех пространственных положениях. Весьма широко используются в промышленности и строительстве.

    Целлюлозное покрытие содержит преимущественно органические составляющие для образования большого количества газов. В качестве шлакообразующей основы чаще всего используют рутилосиликатные компоненты. В дополнение к этому покрытие электродов содержит иногда ряд специальных компонентов, например асбест.

    Раскисление сварочной ванны чаще всего осуществляется с помощью ферромарганца, поскольку введение активных раскислителей (ферротитана и особенно ферросилиция) увеличивало бы чувствительность металла шва к образованию пор.

    Электроды с целлюлозным покрытием характеризуются высокой проплавляющей способностью и значительной скоростью расплавления. Они обеспечивают сварку во всех пространственных положениях, в том числе сварку сверху вниз, с Высокой линейной скоростью, достигающей 25 м/ч. Сварка корневого шва производится методом опирания с формированием обратной стороны шва. Поэтому при сварке отпадает необходимость подварки швов изнутри и обеспечивается наиболее благоприятная, с точки зрения работоспособности, форма проплавления сварных соединений. Электроды с покрытием этого вида наиболее широко применяют в отечественной практике для сварки стыков магистральных трубопроводов.

    К недостаткам следует отнести повышенные потери электродного металла на разбрызгивание, образование узких трещиноподобных подрезов по свариваемым кромкам, грубочешуйчатую поверхность швов, высокий уровень содержания в металле швов диффузионно-подвижного водорода.

    Основное покрытие составляется преимущественно на базе карбоната и фторида кальция (другие фторидные соединения используют значительно реже). Газовая защита создается струей СO2, образующейся при диссоциации карбоната кальция в процессе нагрева и плавления покрытия. В качестве раскислителей покрытие может включать ферросилиции, ферромарганец, ферротитан и алюминий.

    Для легирования металла шва в покрытие могут быть введены металлические порошки.

    Сварку электродами с основным покрытием осуществляют на постоянном токе обратной полярности. Для сварки переменным током необходимы специальные меры: дополнительное введение в состав покрытия ионизаторов, применение электродов со специальным двухслойным покрытием и т. д.

    Основной шлак, как правило, пригоден для сварки во всех пространственных положениях. Вместе с тем для обеспечения сварки сверху вниз ему необходимо придать специальные физические свойства. Технологичность основного покрытия при сварке корневых швов обычно хуже по сравнению с целлюлозным.

    К недостаткам основного покрытия следует отнести низкую технологичность при сварке переменным током; трудности при изготовлении электродов, в частности использование специальных добавок — пластификаторов; чувствительность к образованию пор при увлажнении покрытия и наличии влаги, окалины или ржавчины на свариваемых кромках. В связи с высокой степенью раскисления сварочная ванна адсорбирует водород в значительно больших количествах по сравнению с нераскисленной. Поэтому необходимо строго ограничивать содержание влаги в электродном покрытии путем высокотемпературной прокалки их на заводах-изготовителях, повторной прокалки перед сваркой, хранением непосредственно перед сваркой в специальных термопеналах и т. п.

    В отечественной практике и за рубежом основное покрытие используется преимущественно при изготовлении электродов специального назначения: высокопрочных, хладостойких, жаропрочных, коррозионностойких и т. д.

    Рутилкарбонатные и карбонатно-рутиловые покрытия появились в результате попыток объединить преимущества рутиловых и основных покрытий. В результате несколько повышаются вязкость и пластичность металла швов по сравнению со швами, выполненными рутиловыми электродами. В дополнение к этому улучшаются сварочно-технологические свойства электродов в сравнении, например, с электродами основного вида при одновременном снижении чувствительности к образованию пор в металле швов.

    Специальные электродные покрытия относятся к так называемым гидрофобным покрытиям. Необходимость в указанных покрытиях возникает, например, при выполнении сварочных работ в особо влажных условиях: при повышенной влажности атмосферы, под водой и т. д. Имеются два пути создания гидрофобных покрытий: в обычное связующее электродных покрытий (жидкое стекло) добавляют до 10% специальных кремнийорганических соединений — гидрофобных полимеров, в качестве которых могут быть использованы также синтетические смолы, лаки и т. д. Введение полимеров позволяет в процессе полимеризации в смеси с отвердителем (рудоминеральными компонентами) получить гидрофобную смолу сложного состава, заполняющую поры между частицами покрытия и перекрывающую пути проникания влаги во внутренние слои покрытия; замена силикатного связующего полимеризующимся органическим, обладающим рядом специальных физико-химических свойств (необходимой вязкостью, адгезией к металлу; пластифицирующей способностью; подходящим режимом отверждения и т. д.).

    При использовании в качестве связующих полимеров удается в несколько раз снизить содержание влаги в электродном покрытии и сохранить необходимую механическую прочность при работе во влажной атмосфере и под водой.

    Указанная классификация электродных покрытий, принятая по международной стандартизации (стандарт ИСО 2560—73), в определенной мере условна даже применительно к электродам общего назначения. В странах бывшего СССР и за рубежом имеется ряд промежуточных покрытий, а для электродов специального назначения, предназначенных, например, для сварки и наплавки цветных металлов и их сплавов — специфических, не поддающихся классификации по группам.

    Выбор флюса и проволоки по основности и диаграммам активности →

    Поделиться ссылкой:

    Покрытия электродов сварочных для ручной дуговой сварки: типы, состав, обозначения

    Электрод для ручной дуговой сварки – это металлический стержень с защитным покрытием-обмазкой. Составляющие покрытия обеспечивают защиту зоны сварки от окисления воздухом, способствуют усилению ионизации. Стержни с обмазкой применяют как для черных, так и для цветных металлов, а также сплавов.

    Основная задача, которую возлагают производители на покрытие электродов для ручной дуговой сварки – это защита плавящегося металла. Они предохраняют плавящийся металл от взаимодействия с воздухом, предотвращая окисление, делают готовый шов качественным и прочным.

    При работе со сварочным аппаратом защитная обмазка создает оболочку из шлака на капельках электродного металла, продвигающегося по дуговому промежутку, а также на плавящейся поверхности привариваемых друг к другу деталей.

    Защитный слой из шлака снижает скорость, с которой остывает металл, и быстроту его отвердевания, благодаря чему из него успевают выйти газовые и другие включения, которые негативно сказываются на прочности конструкции. Как правило, защитное напыление состоит из целого комплекса шлакообразующих элементов, таких как каолин или концентрат титана.

    Обмазка, покрывающая стержни из металла, выполняет целый ряд основных и второстепенных задач. Из первостепенных можно выделить:

    • Предохранение самой дуги и металла в области сварочной ванны от взаимодействия с присутствующими в составе атмосферы азота, кислорода, а также водорода, который содержится в паре воды. Обмазка стержня создает двухступенчатую защиту: пары углекислого газа и углеродных окисей, обволакивающие рабочий участок, и пленку шлака на поверхностном слое расплавленного металла;
    • обеспечение качественной кристаллизации шва без образования пор, зашлаковки и трещин.

    Второстепенные, но не менее важные задачи:

    • обеспечение бесперебойного горения дуги в широком спектре режимов работы, упрощение процесса зажигания. Стабильность дуги реализуется за счет присутствия в поверхностном слое стержня компонентов, которые не склонны к ионизации в большом объеме. Это способствует увеличению количества ионов, стабилизирующих горение, в дуговом пространстве;
    • удаление из металла сварочной ванны растворенного в нем кислорода. Для этого в состав обмазки добавляют ферросплавы, которые легче и быстрее, чем сам металл, вступают с кислородом в реакцию;
    • очистка металла шва от примесей (рафинирование).

    Рассмотрим, какие покрытия электродов бывают, их компоненты и как обозначается какое из них. Существуют четыре основных вида покрытий, применяемых при производстве электродов для сварки:

    1. покрытие кислого типа, обозначаемое буквой А;
    2. основное (Б) покрытие;
    3. целлюлозная обмазка (Ц);
    4. рутиловое (Р).

    Покрытие сварочных электродов подбирают исходя из того, какой вид стали планируется варить, силы нагрузки на конструкцию и других факторов.

    Диаметр покрытия

    В продаже можно встретить много марок электродов, предназначенных для разных видов металла и силы предполагаемых нагрузок на будущую конструкцию.

    Стержни с обмазкой имеют два значения диаметра: диаметр самого электрода и общий диаметр стержня и напыления.

    При выборе подходящего варианта диаметр является одним из определяющих факторов: чем он больше, тем большую толщину металла можно соединить с помощью стержня.

    Важно! Режим работы сварочного аппарата выставляется, исходя из толщины соединяемых деталей и диаметра стрежней. Важно правильно рассчитать силу тока, так как при слишком сильном токе металл можно просто прожечь насквозь, а при слишком слабом не получится образовать дугу.Диаметр стрежня с обмазкой влияет не только на простоту работы с материалом при сварке, но также обеспечивает нужные характеристики выполненного соединения, влияет на прочность получившейся конструкции.

    Так, к примеру, электроды, имеющие маркировку Э42А и Э46, используют для сварки деталей из низколегированных видов стали.

    Буква «Э» в маркировке означает штучный электрод, повсеместно применяемый для ручной дуговой сварки в домашних условиях.

    Число, следующее за буквой, – минимальное значение гарантируемого временного сопротивления на разрыв шва. Чем больше это число, тем большие нагрузки выдержит сваренная деталь.

    Например, продукция типа Э42 обеспечивает сопротивление не менее 42 кгс/мм2, а стрежни с маркировкой Э46 – не менее 46 кгс/мм2.

    Электроды Э42А применяются для металла с аналогичными качественными показателями на разрыв, но в условиях, когда необходимы более высокие параметры ударной вязкости и относительного удлинения полученного шва.

    Об улучшенных характеристиках говорит буква «А» в маркировке, которая обозначает кислый тип обмазки стержня.

    Толщина покрытия

    Синяя обмазка электрода марки МР-3С

    Помимо характеристик нанесенного на электродный стержень покрытия и диаметра самого электрода при подборе материалов для сварки также ориентируются на толщину защитной обмазки.

    Толщина обмазки стержня электрода – это соотношение общего диаметра (D) и диаметра внутреннего стержня (d). То есть, более толстый электрод может иметь меньшую толщину покрытия, если у него меньшее значение соотношения D/d.

    Для каждого диаметра внутреннего стержня существует своя толщина покрытия. Всего существует 4 категории электродов, различающиеся толщиной покрытия:

    1. тонкие или стабилизирующие электроды (для их обозначения используется буква М) с соотношением 1,2 или более;
    2. средние электроды (обозначаются буквой С) с соотношением 1,45 или больше;
    3. толстые, имеющие соотношение меньше или равное 1,8, которые еще называют качественными (маркируются буквой Д);
    4. особо толстые электроды, так же входят в категорию качественных и имеют соотношение диаметров свыше 1,8 (можно узнать по букве Г в маркировке).

    Толщина покрытия качественных электродов колеблется в диапазоне от 0,5 до 2,5 мм, что составляет 20-40% от массы внутреннего стержня. Если учитывать железный порошок, то диаметр составит 3,5 мм, а массовая доля – 50%. Такие электроды применяют, когда нужен шов высокого качества, способный выдержать большие нагрузки.

    Тонкие или стабилизирующие электроды, толщина обмазки которых примерно 0,1-0,3 мм, делают горение дуги ровным и непрерывным, но никак не влияют на качественные показатели наплавляемой стали.

    Размеры покрытия

    При осуществлении различных сварочных работ большую роль играет правильный выбор электродов. Чем большую толщину имеет свариваемое изделие, тем большим диаметром должен обладать электрод. В зависимости от этого выставляется величина тока на оборудовании.

    Дуговая сварка покрытыми электродами требует грамотный выбор этих расходных элементов. При выборе электродов следует подвергать анализу величину размеров покрытия на нем. Каждое значение диаметра требует конкретную толщину покрытия. Обмазка наносится на определенной длине стержня.

    Градация этого габарита, определенная в ГОСТе 9466-75, начинается с тонких, и заканчивается особо толстыми. Между ними находятся средние и толстые. Покрытия, имеющие статус тонких, обозначаются как «М», средние как «С». Толстые имеют обозначение «Д», а особо толстые носят обозначение «Г». Эти буквы являются частью общего обозначения электродов с покрытием.

    Для электродов, считающихся наиболее качественными, толщина обмазки находится в диапазоне от 0,5 до 2,5 миллиметров. У электродов с маленьким диаметром этот размер не превышает 0,3 миллиметра. Масса покрытия составляет примерно половину от значения общего веса расходного элемента.

    Обмазкой, представляющей собой твердое пористое вещество, покрывают практически весь стержень, за исключением небольшого участка на его краю, размером приблизительно 20-30 миллиметров. Этот участок оставляют для того, чтобы поместить электрод в специальный держатель для его фиксации, что приводит к удобству работы с ним.

    Лучшие электроды с основным покрытием

    Рассматриваемые в данной статье электроды с основным покрытием, применяются для сварки постоянным током. При сгорании они выделяют много углекислого газа, который служит в качестве защиты сварочной ванны.

    Используются такие электроды для сварки ответственных конструкций, обеспечивая при этом качественное и надёжное соединение. Однако не обойтись и без ложки дёгтя, поскольку электроды с основным покрытием имеют повышенную чувствительность к влаге. Варить такими электродами, когда они отсыреют, становится проблематично.

    Рассмотрим самые популярные электроды с основным покрытием, которые отличаются повышенным качеством.

    Электроды Kobelco LB-52U

    Kobelco LB-52U — электроды, которые производятся в Японии, одним из крупнейших концернов страны Kobe Steel, Ltd. Основное назначение этих электродов с основным покрытием, это сварка низкоуглеродистой стали, там, где невозможно использовать двухстороннюю проварку металла (сварка трубопроводов).

    Вследствие этого, электроды Kobelco LB-52U отличаются не только возможностью создания пластичного шва, но и очень малым количеством шлака. Сварочный шов, образуемый электродами LB-52U, не имеет раковин, и других дефектов, которые остаются после обычных электродов.

    Прочность сварочного шва, достигает 588 Н/мм², что является достаточно высоким показателем. Единственный недостаток электродов Kobelco LB-52U, это, как было сказано выше, чрезмерная подверженность во влажной среде. Поэтому для того чтобы нормально варить данными электродами, их нужно будет обязательно прокалить. Температура прокалки электродов с основным покрытием (Kobelco LB-52U), не менее 300 градусов.

    Электроды ОЗЛ-8 (ЛЭЗ)

    Основное назначение электродов ОЗЛ-8, это сварка нержавеющих сталей с высоким процентом никеля и хрома. Сварка электродами ЛЭЗ ведётся на постоянном токе обратной полярности. Созданный шов отличается высокой стойкостью к коррозии, а также достойными прочностными показателями.

    Здесь, как и при сварке, предыдущими электродами с основным покрытием, образуется малое количество шлака. К тому же, шлак практически сразу же отделяется от поверхности остывшего сварочного шва. Что не менее важно, при остывании шов не растрескивается. При этом все же не следует допускать резкого охлаждения сварочного шва, чтобы не допустить снижение прочности соединения.

    Электроды УОНИ 13-55

    Пожалуй, самые популярные электроды с основным покрытием среди сварщиков. Основные преимущества УОНИ 13/55 связаны с высокой прочностью сварочного шва, а также с его стойкостью к различным нагрузкам. На вид, поверхность сварочного шва, полученного данными электродами, чем-то напоминает застывшее стекло.

    Электроды с кислым покрытием (символ А)

    В состав электродов с кислым покрытием входят: оксиды железа, марганца и кремния. Стоит отметить, что токсичные оксиды марганца могут нанести вред здоровью человека. Поэтому электроды с кислым покрытием теряют свою популярность и используются все реже. Вместо них применяются смешанные – рутилово-кислые.

    По механическим свойствам металла шва электроды с покрытием этого вида относятся к типам Э38 и Э42 по ГОСТ 9467-75, обладая пределом прочности до 412 МПа. Они малочувствительны к окалине и ржавчине на свариваемом металле, а также допускают работу удлиненной дугой. Сварку ими можно выполнять на постоянном и переменном токе.

    При работе электродами с таким типом покрытия за счет выделения большого количества кислорода во время сварки повышается температура дуги и снижается поверхностное натяжение расплавленного металла, что делает его очень текучим. Это позволяет повысить скорость сварки, но несет риски подрезов (один из дефектов сварного соединения). При этом металл шва имеет повышенную склонность к образованию горячих трещин.

    Плюсы электродов с кислым покрытием

    • Легкое зажигание и стабильное горение дуги
    • Возможность проводить сварочные работы на постоянном и переменном токе
    • При сварке ржавого или покрытого окалиной металла не образуют пор
    • Устойчивость к влаге и механическим воздействиям
    • Обеспечивает ровный сварной шов
    • Хорошая отделяемость шлаковой корки

    Минусы электродов с кислым покрытием

    • Риск образования подрезов
    • Выброс опасных токсинов
    • Опасность образования горячих трещин при сварке

    Области применения

    Данный тип электродов используют для сварки некритичных низколегированных стальных конструкций в строительстве и машиностроении.

    Дополнительные виды электродов

    Расходники делятся на группы по способу работы.

    Неплавящиеся электроды

    Изделия предназначены для автоматической и полуавтоматической сварки.

    В рабочую зону подают:

    • защитный газ (в большинстве случаев — аргон);
    • присадочный материал.


    Неплавящиеся электроды предназначены для автоматической сварки.
    Тугоплавкие расходники покрытия не имеют.

    Они изготавливаются из следующих материалов:

    1. Вольфрама. Металл используется в чистом виде или с добавкой тория, лантана, церия, иттрия или циркония. Тип присадки определяют по цветовой маркировке.
    2. Искусственного прессованного графита.
    3. Электротехнического угля.

    Неплавящимися расходниками варят:

    • сталь;
    • чугун;
    • алюминий;
    • медь;
    • латунь;
    • бронзу.

    При сварке неплавящимся электродом на постоянном токе анодное пятно (со стороны «плюса») имеет более высокую температуру, чем катодное.

    Поэтому для соединения тонкостенных заготовок используют обратную полярность: «+» подключают к расходнику. В противном случае металл прогорит.

    Плавящиеся электроды

    Изделия данного типа используются в ручной дуговой сварке.


    Плавящиеся электроды используются в ручной дуговой сварке.

    В процессе работы материал стержня переносится в сварочную ванну.

    Расходники изготавливают из сварочной проволоки Св-08 или Св-08А.

    Используются следующие виды стали (всего 77 марок):

    • углеродистая;
    • легированная;
    • высоколегированная.

    Изделие подбирают в соответствии с материалом заготовок.

    При сварке постоянным током более горячим является катодное пятно (со стороны «минуса»). Поэтому тонкостенные заготовки соединяют прямой полярностью: «-» подключают к расходнику.

    Электроды из цветмета

    Такие расходники используют для соединения заготовок из алюминия, меди, никеля, прочих цветных металлов и их сплавов. Подбирают стержень из того же материала, что и свариваемые детали.

    Используют следующие марки:

    1. Алюминий — ОЗА-1 и ОЗА-2.
    2. Алюминиевые сплавы — АФ-4аКр и А-2.
    3. Медь, бронзу, латунь — МН-5, КМ-100, АМНЦ/ЛКЗ-АБ.
    4. Никель и его сплавы — ХН-1 или МЗОК.


    Электроды из цветмета используют для алюминия, меди, никеля.
    Электроды для сварки алюминия делают из проволоки Св-А1 с галогенидным покрытием. Они подходят всем маркам металла.

    Параметры процесса:

    • постоянный ток;
    • обратная полярность;
    • нижнее пространственное положение шва.

    Расходники КМ-100 и им подобные выполнены из медной проволоки и снабжены основным покрытием (фтористо-кальциевым). Оно характеризуется пониженным выделением кислорода, оказывающего разрушительное действие на металл. Возможно соединение меди с углеродистой сталью.

    Параметры процесса:

    • постоянный ток;
    • обратная полярность;
    • нижнее пространственное положение шва.

    Электроды для контактной сварки тоже делают из меди или бронзы.

    Расходники марки МЗОК и им подобные изготавливают из никелево-медной проволоки с покрытием основного типа.

    Параметры процесса:

    • постоянный ток;
    • прямая и обратная полярность;
    • любое пространственное положение шва.

    Как наносится покрытие

    Как уже было сказано выше, толщина покрытия непосредственно зависит от диаметра самого стержня. Для нанесения такого покрытия могут использоваться различные технологии. Нанесение обмазки выполняется при их изготовлении с помощью специального оборудования. Такое оборудование работает в полностью автоматическом режиме, что позволяет повысить качество нанесения покрытия на электроды. Твердые элементы в составе обмазки могут размалываться, и наноситься дополнительно на вязкую основу обмазки. Для обеспечения единой фракции таких твердых компонентов их просеивают через специальные фильтры, и лишь после этого выполняется их нанесение на поверхность наплавочного материала. В отдельных случаях при нанесении обмазки готовый состав предварительно обжигают, что позволяет удалить серу, которая может ухудшить качество сварного соединения. На последнем этапе нанесения покрытия станок окунает стержни в приготовленную смесь, и на выходе мы получаем равномерный слой обмазки.

    Критерии отбора

    К сожалению, российские электроды проигрывают многим зарубежным аналогам по большинству параметров. Однако «прорывы» в этой области уже наметились. Российская электродная продукция, выпускаемая на немногочисленных пока совместных предприятиях, по стабильности качества уже не уступает многим маститым брендам. Начали «подтягиваться» к ним и некоторые заводы отечественной подчиненности. Однако в случаях, когда требуется уверенно обеспечить высокое качество шва, профессионалы по-прежнему предпочитают использовать более дорогие, но и более качественные электроды зарубежного производства. Для сварочных инверторов подходят электроды любого типа, для сварочных аппаратов переменного тока подходят не все типы.

    При выборе лучших электродов для обзора мы руководствовались следующими критериями:

    • объемы производства;
    • качество продукции;
    • попадание производителя в обзоры по электродной промышленности;
    • отзывы профессионалов.

    Для корректности сравнения цен мы включили в обзор только самый часто применяемые электроды диаметром 3 мм.

    Основным параметром любого сварочного электрода, определяющим большинство его свойств – от легкости розжига до качества шва – является состав его обмазки. Наиболее распространенными сегодня являются следующие виды обмазок:

    • Рутиловые электроды (и электроды со смешанной обмазкой на этой основе – рутилово-целлюлозные и так далее) стали одними из самых популярных благодаря легкости розжига, в том числе и повторного, сниженной (в разумных пределах) чувствительности к отсыреванию. Они могут использоваться и на переменном, и на постоянном токе во всех направлениях шва, но при выборе рутилового электрода нужно быть внимательным – можно купить как хороший электрод, так и загрязняющий шов огромным количеством шлаковых язв, пригодный разве что для прихваток.
    • Электроды с основным покрытием чаще всего используются при сварке постоянным током в особо ответственных местах. При горении обмазки в большом количестве выделяется углекислый газ, надежно защищающий сварочную ванну от воздействия кислорода. Сам шов получается более пластичным, чем при сварке распространенными типами рутиловых электродов. Обратная сторона медали – это повышенная чувствительность к влажности и затрудненный розжиг: варить такими электродами заметно труднее.

    На главную

    § 15. СВОЙСТВА ЭЛЕКТРОДОВ

    Покрытия (обмазки) электродов.

    Электродные покрытия (обмазки) состоят из шлакообразующих, газообразующих, раскисляющих, легирующих, стабилизирующих и связующих (клеящих) компонентов. Шлакообразующие составляющие защищают расплавленный металл от воздействия кислорода и азота воздуха и частично рафинируют (очищают) его. Они образуют шлаковые оболочки вокруг капель электродного металла, проходящих через дуговой промежуток, и шлаковый покров на поверхности металла шва, шлакообразующие составляющие уменьшают скорость охлаждения металла и способствуют выделению из него неметаллических включений, Шлакообразующие составляющие могут включать титановый концентрат, марганцевую руду, полевой шпат, каолин, мел, мрамор, кварцевый песок, доломит, а также вещества, повышающие стабильность горения дуги. Газообразующие составляющие при сгорании создают газовую защиту зоны сварки, которая также предохраняет расплавленный металл от кислорода и азота воздуха. Газообразующие составляющие состоят из древесной муки, хлопчатобумажной пряжи, крахмала, пищевой муки, декстрина и целлюлозы. Раскисляющие составляющие необходимы для раскисления расплавленного металла сварочной ванны. К ним относятся элементы, которые обладают большим сродством к кислороду, чем железо, например марганец, кремний, титан, алюминий и др. Большинство раскислителей вводится в электродное покрытие в виде ферросплавов. Легирующие составляющие необходимы в составе покрытия для придания металлу шва специальных свойств: жаростойкости, износостойкости, сопротивляемости коррозии и повышения механических свойств. Легирующими элементами служат марганец, хром, титан, ванадий, молибден, никель, вольфрам и некоторые другие элементы. Стабилизирующими составляющими являются те элементы, которые имеют небольшой потенциал ионизации, например калий, натрий и кальций. Связующие (клеящие) составляющие применяют для связывания составляющих покрытия между собой и со стержнем электрода. В качестве них применяют калиевое или натриевое жидкое стекло, декстрин, желатин и другие. Основным связующим веществом служит жидкое стекло. По своему металлургическому действию существуют рудно-кислое, фтористо-кальциевое, рутиловое и газоза-щитпое (органическое) покрытия. Имеются также и другие виды покрытий — стабилизирующее, карбовато-рутиловое, галогенидное и специальное. Все покрытия должны удовлетворять следующим требованиям: обеспечивать стабильное горение дуги; физические свойства шлаков, образующихся при плавлении электрода, должны обеспечивать нормальное формирование шва и удобное манипулирование электродом; не должны происходить реакции между шлаками, газами и металлом, способные вызвать образование пор в сварных швах; материалы покрытия должны хорошо измельчаться и не вступать в реакцию с жидким стеклом или между собой в замесе; состав покрытий должен обеспечивать приемлемые санитарно-гигиенические условия труда при изготовлении электродов и в процессе их сгорания. Физические свойства образующихся шлаков оказывают значительное влияние на процесс сварки и формирование сварного шва. Во всех электродных покрытиях при их плавлении плотность шлака должна быть ниже плотности металла сварочной ванны, что обеспечит его всплываиие из сварочной ванны. Температурный интервал затвердения шлака должен быть ниже температуры кристаллизации металла сварочной ванны, иначе слой шлака не будет пропускать выделяющиеся из сварочной ванны газы. Шлак должен покрывать сварной шов по всей поверхности ровным слоем. Шлаки, образующиеся при плавлении электродных покрытий, бывают «длинные» и «короткие». «Длинными» называют такие шлаки, в составе которых содержится значительное количество кремнезема. Возрастание их вязкости при понижении температуры происходит медленно. Электроды, имеющие покрытия, образующие при плавлении «длинные» шлаки, не пригодны для сварки в вертикальной и потолочной плоскостях, так как сварочная ванна длительное время находится в жидком состоянии. Для сварки во всех пространственных положениях применяют электроды, покрытия которых при плавлении дают «короткие» шлаки; возрастание вязкости расплавленного шлака с понижением температуры происходит быстро, поэтому закристаллизовавшийся шлак препятствует стеканию металла шва, находящегося еще в жидком состоянии. «Короткие» шлаки дают электроды с рутиловым и фтористо-кальциевым покрытием. Достаточно хорошую отделимость шлаковой корки от поверхности металла получают при применении шлаков, имеющих коэффициент линейного расширения, отличающийся от коэффициента линейного расширения металла.
    Свойства металла шва и технологические характеристики электродов.
    Электроды характеризуют по свойствам наплавленного ими металла, к которым относятся: прочность, пластичность, удлинение, ударная вязкость, твердость, коррозионная стойкость, стойкость против старения, а при наплавочных работах и износостойкость. Наряду с качеством металла шва, полученного при сварке данным электродом, важное значение имеют и его технологические свойства. К основным технологическим свойствам электрода относят его производительность, пригодность для сварки в различных пространственных положениях, стабильность горения дуги при постоянном и переменном токе, допустимую максимальную и минимальную длину дуги, форму шва, коэффициенты наплавки, расплавления и потерь.

    Вопросы для самопроверки

    1. Какими характеристиками определяются свойства электродов? 2. Какие составляющие включаются в состав покрытия электродов? 3. Как классифицируются покрытия?
    предыдущая страница

    оглавлениеследующая страница

    Покупка электродов: как определить качество

    При покупке данной продукции следует сразу обратить внимание на несколько моментов:

    • срок годности (указан на упаковке) — он не должен быть превышен;
    • качество обмазки — не должно наблюдаться ее крошения с сердечника, в противном случае она либо очень долго хранилась, либо представляет собой продукцию с изначальным заводским браком;
    • помимо этого, покрытие должно быть нанесено на сердечник равномерно, с одинаковой толщиной слоя.

    Кроме того, следует сразу исключить риски его отсыревания, поместив электроды в специальные пеналы. Если же всё-таки последнее произошло, возможна просушка или прокалка изделий при t +400 °C.

    Влияние влаги на материалы

    Покрытия электродов с пористо структурой, которая очень хорошо впитывает влагу и воду. Как результат — потеря защитных свойств и характеристик, качества шва.

    Правила долговечности электродов:

    1. Хранить расходники в герметично закрытой упаковке. Если упаковка открыта, переложить в герметичный пенал, чтобы не поступала влага и вода.
    2. Перед применением можно просушивать в печах, предназначенных для этого, придерживаясь указанной температуры и времени.
    3. Электрод, который на протяжении 3 часов не был в работе, нуждается в просушке обязательно.
    4. Больше 4 просушиваний в печах не рекомендуется, это приведёт к осыпанию покрытия.
    5. Рутиловая оболочка проявляет себя при малейшей влаге, нужно сначала просушить изделие при температуре до 200С и только через сутки использовать в работе.

    Маркировка электродов

    Виды и марки электродов насчитывают десятки модификаций, поэтому для успешного ориентирования в их разновидностях была введена универсальная маркировка. Разумеется, по маркировке электрода всегда можно понять, какое покрытие он несет. Основные параметры в данном случае – это толщина и тип покрытия. Помимо этого в маркировке упоминается допустимое пространственное положение сварочного шва, а также род тока.

    Пример расшифровки маркировки покрытого электрода

    Для примера рассмотрим электрод Э46.

    • 1 – указывает на толщину покрытия (Д – это толстое);
    • 2 – означает тип покрытия (Р – это рутиловое);
    • 3 — говорит о допустимом положении шва (1 – подходит для всех положений);
    • 4 – это род тока (1 – означает переменный и постоянный любой полярности).

    Требования к электродам

    Выбирая стержни для работы, стоит их внимательно рассмотреть и оценить. Покрытие должно быть без сколов, повреждений, иначе не удастся добиться однородного разогрева и равномерного получения шва. На кончике электрода толщина смазки должна быть такой же, как на всем стержне – благодаря этому электрическая дуга пройдет по центру.

    Проинспектировать стоит влажность покрытия, иногда повышенная влажность обмазки не позволяет легко зажечь стержень. Отсюда, требования к хранению электродов в сухом месте, желательно, герметично упакованными. Народные умельцы рекомендуют в упаковку класть пакетики с солью для устранения излишней влаги. Если случится, что электроды отсыревают, их можно подсушить в кухонной духовке при невысокой температуре. Этот параметр указывается на упаковке изделий. Можно также оставить в проветриваемой сухой комнате.

    Во время сварочных работ для получения качественного прочного, устойчивого шва необходимо учитывать основные моменты:

    • Правильная для конкретного изделия сила тока.
    • Подходящий для изделия и вида работ диаметр сварочного электрода.
    • Учет размерности и толщины свариваемых материалов.

    Выбрав параметры, сварщик создает устойчивую, хорошо горящую дугу, которая обеспечит реализацию сварочных работ на высоком уровне.

    Применение

    Электроды с основным покрытием отлично подходят для использования в следующих случаях:

    • сварка спокойных сталей с высоким содержанием серы;
    • сталей с повышенным содержанием серы, углерода, фосфора;
    • сварка закаливающихся сталей, в которых могут формироваться холодные трещины;
    • при сварке низколегированных и высоколегированных сталей, которые используются при больших нагрузках и высоких температурах;
    • если нужно сварить детали большой толщины;
    • при сварке жестких конструкций.
    Рейтинг
    ( 1 оценка, среднее 5 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]