Тест 9 класс Генератор переменного тока. Трансформаторытест по физике (9 класс)

Открытие в далёком 1831 году великим учёным Фарадеем принципа электромагнитной индукции позволило по-новому взглянуть на многие законы электротехники. Именно основываясь на взаимодействие электромагнитных полей, через 45 лет после этого великий русский учёный П. Н. Яблочков получил патент на изобретение трансформатора. Классическое определение звучит так: трансформатор — это электрическое устройство, преобразующее ток первичной обмотки одного напряжения, в ток вторичной обмотки с другим напряжением.

Индукционный эффект образуется при изменении электромагнитного поля, поэтому для работы трансформатора необходимо наличие напряжения с переменным током. Трансформация (передача) осуществляется преобразованием электрической энергии первичной обмотки в магнитное поле, а затем, во вторичной обмотке происходит обратное преобразование магнитного поля в электрическую энергию. В случае если количество витков вторичной обмотки будет превышать число витков первичной обмотки, то устройство будет называться повышающим трансформатором. При подключении обмоток в обратном порядке, получается понижающее устройство.

Устройство и принцип работы

Конструктивно повышающее устройство трансформации напряжения состоит из сердечника и двух обмоток. Сердечник собран из пластин электротехнической листовой стали. На него намотаны первичная и вторичная обмотки, из медного провода, различного диаметра. Толщина провода намотки трансформатора напрямую зависит от его выходной мощности.

Сердечник устройства может быть стержневым или броневым. При использовании изделия в сетях низкочастотного напряжения чаще всего применяются стержневые магнит проводы, которые по форме могут быть:

  • П-образные.
  • Ш-образные.
  • Тороидальные.

Изготавливаются сердечники из трансформаторного специального железа, от качественных характеристик которого и зависят многие общие параметры устройства. Набирается сердечник из тонких железных пластин, которые изолированы друг от друга лаком или слоем окиси, для уменьшения потерь за счёт вихревых токов. Могут применяться и готовые половинки, которые сделаны из сплошных железных лент.

Достоинства и недостатки сердечников

  • Наборные чаще применяются для устройства магнитопроводов с произвольным сечением, ограничивающимся только шириной пластин. Лучшие параметры имеют устройства трансформации напряжения с квадратным сечением. Недостатком такого типа сердечника считается необходимость плотного стягивания пластин, малый коэффициент заполнения пространства катушки, а также повышенное рассеивание магнитного поля устройства.
  • Витые сердечники намного проще наборных в сборке. Весь сердечник Ш-образного типа состоит из четырёх частей, а П-образный тип имеет только две части в своей конструкции. Технические характеристики такого трансформатора гораздо лучше, нежели чем наборного. К недостаткам можно отнести необходимость минимального зазора между частями. При физическом воздействии пластины частей могут отслаиваться, и, в дальнейшем очень трудно добиться плотного их прилегания.
  • Тороидальные сердечники имеют форму кольца, которое свито из трансформаторной железной ленты. Такие сердечники имеют самые лучшие технические характеристики и практически полное исключение рассеивания магнитного поля. Недостатком считается сложность намотки, особенно проводов с большим сечением.

В трансформаторах Ш-образного типа все обмотки обычно делаются на центральном стержне. В П-образном устройстве вторичная обмотка может наматываться на один стержень, а первичная — на другой. Особенно часто, встречаются конструктивные решения, когда разделённые пополам обмотки наматываются на оба стержня, а после соединяются между собой последовательно. При этом существенно сокращается расход провода для трансформатора, и улучшаются технические характеристики прибора.

Технические характеристики

Основными характеристиками при эксплуатации трансформатора считаются:

  • Напряжение входное.
  • Величина напряжения на выходе.
  • Мощность прибора.
  • Ток и напряжение холостого хода.

Величина отношения напряжений на входе и выходе устройства называется коэффициентом трансформации. Это соотношение зависит только от количества витков в обмотках и остаётся неизменным при любом режиме функционирования устройства.

От диаметра проводов и от типа сердечника напрямую зависит мощность трансформатора, которая со стороны первичной намотки равна сумме мощностей вторичных обмоток, за исключением потерь.

Напряжение, получаемое на выходной обмотке устройства, без подключения нагрузки, называется напряжением холостого хода. Разница между этим показателем и напряжением с нагрузкой указывает на величину потерь за счёт разного сопротивления проводов обмотки.

От качественных показателей сердечника трансформатора полностью зависит величина тока холостого хода. В идеальном случае, ток первичной обмотки создаёт в сердечнике устройства магнитное поле переменного значения, по величине электродвижущая сила которого равна току холостого хода и противоположна по направлению. Но вот в реальности величина электродвижущей силы всегда меньше напряжения на входе, за счёт возможных потерь в сердечнике.

Именно поэтому для уменьшения величины тока холостого хода, требуется материал высокого качества при изготовлении сердечника и минимальный зазор между его пластинами. Таким условиям в большей мере соответствуют тороидальные сердечники.

Другие виды

В соответствии с рабочими характеристиками представленное оборудование различается еще по нескольким признакам. По количеству контуров бывают однофазные (бытовые) и трехфазные (промышленные) конструкции.

В качестве охладительной системы применяются разные субстанции. Различают масляные и сухие разновидности. В первом случае оборудование стоит дешевле. Масло является пожароопасным веществом. При их использовании предусматривается качественная защита от аварии. Сухие агрегаты заполнены негорючим веществом. Они стоят дороже, но требования по их установке лояльные.

Циркуляция охладителя в системе может быть принудительным или естественным. Существуют конструкции, в которых эти методы комбинируются. Многообразие видов позволяет каждому подобрать оптимальный тип устройства.

Типы устройств

В зависимости от мощности, конструкции и сферы их применения, существуют такие виды трансформаторов:

  • Автотрансформатор конструктивно выполнен как одна обмотка с двумя концевыми клеммами, а также в промежуточных точках устройства имеются несколько терминалов, в которых располагаются первичные и вторичные катушки.
  • Трансформатор тока включает в себя первичную и вторичную обмотку, сердечник из магнитного материала, а также оптические датчики, специальные резисторы, позволяющие ускорять способы регулировки напряжения.
  • Силовой трансформатор — это устройство, передающее ток, при помощи индукции электромагнитного поля, между двумя контурами. Такие трансформаторы могут быть повышающими или понижающими, сухими или масляными.
  • Антирезонансные трансформаторы могут быть как однофазными, так и трёхфазными. Принцип работы такого устройства мало чем отличается от трансформаторов силового типа. Конструктивно представляет собой устройство литого типа с хорошей теплозащитой и полузакрытой структурой. Трансформаторы антирезонансного типа применяются при передаче сигнала на большие расстояния и в условиях больших нагрузок. Идеально подходят для работы в любых климатических условиях.
  • Заземляемые трансформаторы (догрузочные). Особенностью этого типа является расположение обмоток в форме звезды или зигзага. Часто заземляемые приборы применяют для подключения счётчика электрической энергии.
  • Пик — трансформаторы используются в устройствах радиосвязи и технологиях компьютерного производства, по принципу отделения постоянного и переменного тока. Конструкция такого трансформатора является упрощённой: обмотка с определённым количеством витков расположена вокруг сердечника из ферромагнитного материала.
  • Разделительный домашний трансформатор применяется при передаче энергии переменного тока к другому устройству или оборудованию, блокируя при этом способности источника энергии. В бытовых условиях такие приборы обеспечивают регулирование напряжения и гальваническую развязку. Чаще всего применяются для подавления электрических помех в чувствительных приборах и защиты от вредного воздействия электрического тока.

Как уменьшить выходное напряжение трансформатора?

  1. Поскольку большинство трансформаторов всегда представляют собой центральный ответвитель для двойного источника питания. …
  2. Первичный трансформатор 230/110 В переменного тока на вторичный трансформатор 9–0–9 В, 1 А. …
  3. Обычно мы можем легко применить его как выход 18 В, 1 А без использования клеммы CT.
  4. Кроме того, мы можем использовать его как 9V 2A, поскольку обе катушки соединяются параллельно.

Полезные советы Схемы для подключения Принципы работы устройств Главные понятия Счетчики от Энергомера Меры предосторожности Лампы накаливания Видеоинструкции для мастера Проверка мультиметром

Обслуживание и ремонт

Желательно человеку, не знающему принцип действия электротехнических приборов, не заниматься ремонтными работами этого оборудования, из-за возможности поражения электрическим током. При ремонте и обслуживании трансформаторных устройств, единственное, что можно исправить, без недопустимых последствий, это перемотка трансформатора.

Перед началом любых ремонтных работ необходимо произвести проверку трансформатора:

  • Первым делом необходимо оценить состояние прибора при помощи визуального осмотра, так как порой, потемневшие и вздувшиеся участки, прямо указывают на неисправность обмотки трансформатора.
  • Определение правильности подключения устройства. Электрический контур, генерирующий магнитное поле обязательно должен быть подключён к первичной обмотке прибора. А вот вторая схема, потребляющая энергию трансформатора, должна быть включена в обмотку выходного напряжения.
  • Фильтрация выходного сигнала фазы определяется как для диодов и конденсаторов на вторичной обмотке устройства.
  • Следующим шагом нужно подготовить прибор к контрольному измерению параметров, т. е. снять защитные панели и крышки, чтобы получить свободный доступ к элементам схемы. С помощью тестера нужно в дальнейшем произвести измерение напряжения трансформатора.
  • Для проведения измерений, нужно подать питание на схему устройства. Измерение параметров первичной обмотки проводится тестером в режиме переменного тока. Если полученное значение меньше чем на 80% от ожидаемого, то неисправность может быть как в самом трансформаторе, так и в схеме всего устройства.
  • Проверку выходной обмотки осуществляют при помощи тестера. При этом проверяем обмотку как на возможность появления короткозамкнутых витков, так и на обрыв провода намотки катушки, по принципу измерения сопротивления (если сопротивление мало — то есть вероятность короткозамкнутых витков, а в случае когда сопротивление обмотки велико — обрыв).

После перемотки повышающего трансформатора напряжения, в случае неисправности обмотки, нужно собрать его в обратной последовательности, при этом особое внимание необходимо уделить наиболее плотному прилеганию пластин сердечника.

Самостоятельное изготовление или ремонт устройства предоставляется процессом очень сложным и трудоёмким. Для выполнения таких работ потребуется наличие необходимых материалов, а также умение производить некоторые специальные расчёты. В частности, нужно будет точно рассчитать количество витков в обмотке трансформатора, диаметр проводов для обмотки, а также сечение и тип сердечника устройства.

Поэтому лучше обратиться для проведения этих операций к квалифицированному человеку, знакомому с основными понятиями и свойствами электротехники и расчётами по необходимым формулам.

Функционирование

Чтобы понять, что такое трансформаторы повышающие напряжение, нужно вникнуть в принцип работы. Оборудование изготавливается для электростанций, схемы конструкции которых относятся к проходной категории.

Повышающий трансформатор на электростанциях используется для обеспечения населенных пунктов, прочих объектов током с определенными техническими показателями. Без преобразователя высокое напряжение по пути своего следования постепенно снижается. Конечный потребитель получал бы недостаточное количество электроэнергии. На конечной в цепи электростанции благодаря этой установке, принимают электричество соответствующего значения. Потребитель получает напряжение в сети до 220 В. Промышленные сети обеспечиваются до 380 В.

Схема, показывающая работу трансформатора в линии, включает в себя несколько элементов. Генератор на электростанции производит электричество 12 кВ. Оно поступает по проводам к повышающим подстанциям. Здесь устанавливается трансформаторный аппарат, призванный повышать показатель в линии до 400 кВ.

От подстанции электричество поступает в высоковольтную линию. Далее энергия попадает на понижающую подстанцию. Здесь она снижается до 12кВ.

Трансформаторами с обратным принципом действия ток направляется в низковольтную линию передач. В конце устанавливается еще один понижающий агрегат. От него электричество с показателем 220 В поступает в дома, квартиры и т. д.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]