Ковка металла в домашних условиях- часть 2. Нагрев металла для ковки и топливо для кузницы

Предыдущая статья: Ковка металла в домашних условиях- часть 1. Свойства металла

Ковка металла в домашних условиях настоящее искусство для домашнего мастера, сравнимое с искусством художника, упражняться и совершенствоваться в котором можно бесконечно. Прежде всего вам необходимо будет обзавестись необходимым инструментом для кузнечного дела и оборудовать специальное место под кузницу, или даже сделать кузницу стационарно. Однако даже если у вас имеется сама кузня и все необходимые приспособления для кузницы, кузнечное дело требует еще и дополнительных знаний касательно всего технологического процесса ковки.

Диаграмма состояния железоуглеродистых сплавов

Структуру и температуру фазовых превращений стали при различных температурах удобно определять по диаграмме состояния. На рис. 1 показан участок диаграммы состояния железо–углерод для стали. Каждой точке диаграммы соответствует свой состав стали и определенная температура. Эта диаграмма имеет исключительно важное значение для обоснованного выбора тепловых режимов всех видов горячей обработки давлением, в том числе и термической обработки стали.

Линия АС называется линией ликвидуса. Выше этой линии сплав находится в жидком состоянии. Линия АЕ — линия солидуса, она указывает температуры, соответствующие окончанию первичной кристаллизации сплава. Ниже этой линии сплав находится в твердом состоянии, например с образованием кубической объемно-центрированной кристаллической решетки.

Процесс вторичной кристаллизации сплава в твердом состоянии (например, трансформирование объемно-центрированной кристаллической решетки в объемную гранецентрированную кубическую решетку) заканчивается на линии РSK, называемой эвтектоидной линией, или линией нижних критических точек A1. Критическими точками называют температуры, при которых в стали происходят структурные превращения в твердом состоянии.

Начало процесса вторичной кристаллизации сплава из твердого раствора аустенита определяется линией GSE. Линия GS показывает температуру начала выделения феррита из аустенита. Ее называют также линией верхних критических точек А3. Линия SE соответствует температуре начала выделения вторичного цементита и предельной растворимости углерода в аустените. Ее именуют также линией верхних критических точек Аm. Критические точки при охлаждении обозначают Ar, а при нагревании — Аc.

Области существования твердых и жидких фаз, а также различных структурных составляющих со схематическим изображением микроструктур стали приведены на диаграмме (рис. 1). По диаграмме сталь с содержанием 0,83 % углерода называют эвтектоидной, она имеет перлитную структуру.

Рис. 1. Часть диаграммы состояния железоуглеродистых сталей и температурные интервалы ковки и штамповки

Сталь с содержанием до 0,83 % углерода именуют доэвтектоидной, ее структура состоит из феррита и перлита. Заэвтектоидная сталь содержит > 0,83 % углерода, и ее структура содержит перлит и вторичный цементит.

Наиболее пластичной структурой является структура аустенита. При наличии двухфазной структуры в сплаве его пластичность снижается. У низкоуглеродистых и углеродистых сталей при температуре 1100…1200 °С структура только аустенитная. Из-за высокой пластичности температуру 1200 °С принимают как верхний предел температурного интервала ковки для углеродистой стали. У высокоуглеродистой стали при температуре 1100 °С структура двухфазная: аустенит + цементит, причем последний образует хрупкую сетку по границам зерен.

Для повышения пластичности стали необходимо эту цементитную сетку раздробить для того, чтобы цементит образовал отдельные зерна в металле заготовки. При этом твердость и прочность металла остаются высокими. Верхний предел температур ковки для высокоуглеродистой стали целесообразно принять равным ~1100 °С. При этом ковку надо проводить с предосторожностями, учитывая, что пластичность понижена ввиду двухфазной структуры.

По диаграмме состояния можно также выбрать нижний предел температур ковки, который должен лежать выше температур фазовых превращений. Следует отметить, что низкоуглеродистые стали можно ковать и при структурах феррит+аустенит благодаря достаточно высокой пластичности.

Заэвтектоидные стали имеют нижний предел температур ковки в зоне аустенит+цементит. Эта температура должна быть по возможности более низкой, чтобы предотвратить образование цементитной сетки.

Максимальный интервал ковочных температур с увеличением в стали легирующих элементов становится более узким. Если для углеродистых сталей он составляет ~500…600 °С, то для конструкционных легированных сталей ~330 °С, для тепло-, кислото-, а также коррозионно-стойких сталей ~260 °С, для жаропрочных сталей ~200 °С, а для жаропрочных сплавов ~150 °С.

При установлении нижнего предела температур ковки необходимо учитывать массу поковки, наличие или отсутствие последующей термической обработки, способ охлаждения.

Процесс ковки

Когда заготовка будет разогрета до требуемой температуры, ее стоит обжать. Это нужно делать для устранения различных раковин, пустот и трещин в структуре болванки. Процесс проводят следующим образом. Заготовку вытаскивают из горна и ударами молота проходят ее поверхности от середины до краев (сначала верхнего, а потом нижнего).
Прежде чем планировать изготовление вещей, стоит рассчитывать на то, что при обжимке заготовка потеряет часть своего объема в виде окалины. Она образовывается на поверхности болванки, откуда ее удаляют, используя инструменты: клещи и щетки.

Когда обжимка проведена, переходят к собственно поковке изделия. При этом используют различные приемы для получения нужной формы.

Чтобы на поверхности образовались утолщения, используют способ местной осадки. Также этот прием используют, если нужно уменьшить длину заготовки и сделать ее более толстой. Для этого мастер наносит удары сверху заготовки, расположенной в вертикальной плоскости. При этом металл будет деформироваться и утолщаться. Удобно делать полную обсадку, зажав разогретую заготовку в тисках, но нужно спешить, иначе металл будет очень быстро остывать от холодного приспособления для зажима.

После осадки опять нужно сделать обжимку, чтобы придать структуре однородность!

Одна из разновидностей осадки — высадка. Ее используют, когда нужно получить на поверхности изделия утолщения. Для этого нагрев заготовки делают только в месте высадки.

Если нужно, наоборот, удлинить заготовку, проводят так называемую протяжку. Используют три способа, которыми можно сделать этот прием. Наиболее простой — протяжка на плоских бойках. Для этого заготовку разогревают. Далее, ее проходят молотом по всей длине и, переворачивая на 90 градусов, делают ту же работу. Прием стараются проводить за один разогрев. Довольно часто используют такой подвид протяжки, как расплющивание по всей длине. Основные инструменты при этом молот или кувалда.


Протяжка (вытяжка) металла

Иногда при ковке в домашних условиях нужно сделать в изделии сквозное или глухое отверстие. В таком случае используют прием прошивки. В качестве основного приспособления выступают пробойники различного сечения. При этом заготовку разогревают и укладывают на наковальню сверху круглого отверстия. Установив пробойник, по нему наносят удары. Прошивку можно делать как с одной стороны, так и с обеих.

Для разделения заготовки или изделия на части используют способ рубки. Нагревают металл до темно-красного цвета и, уложив его на наковальню, кузнечным зубилом рубят три четвертых его толщины. После чего поковку переворачивают и дорубают остаток, используя те же инструменты.

Также довольно часто в кузнечном деле использую способ гибки заготовок. Простые формы получают, используя в качестве основного приспособления наковальню с отверстиями. Более сложные кованые элементы формируют, изгибая заготовки на различных шаблонах.


Гибка металла на оправке

Еще один прием, часто использующийся в художественной ковке — скручивание. Заготовку при этом разогревают и жестко фиксируют в тисках, другой конец проворачивают, используя как основное оборудование вороток.

Когда изделие готово нужно стабилизировать металл.

Влияние нагрева на структуру и механические свойства стали

С повышением температуры нагрева металла увеличивается подвижность его атомов, вызывающая протекание ряда сложных физико-химических процессов. Динамика и характер изменения некоторых механических свойств материала в зависимости от температуры нагрева на примере низкоуглеродистой стали приведены на рис. 2, из которого видно, что с повышением температуры в районе 200…300 °С прочность металла увеличивается с одновременным уменьшением пластичности. Это зона синеломкости. При дальнейшем повышении температуры прочность металла, а следовательно, и сопротивление деформированию непрерывно уменьшаются. При этом рост пластичности металла в интервале температур 700…800 °С вновь снижается. Это объясняется структурными превращениями, во время которых металл состоит из двух разнородных структур, характеризующихся неодинаковыми механическими свойствами.

При нагреве металла выше температур 1100…1200 °С резко возрастают скорость роста и размер аустенитных зерен, которые становятся тем больше, чем длительнее выдержка при нагреве. Это явление называют перегревом, а сам металл с излишне крупными зернами – перегретым. Температуру, после которой начинаются интенсивный рост зерна стали и ее перегрев, называют критической. Она составляет для углеродистой стали с содержанием углерода до 0,4 % 1300 °С и >0,4 %


Рис. 2. Изменение механических свойств низкоуглеродистой стали при нагреве: 1 – относительного удлинения δ; 2 – предела прочности oв

углерода 1150 °С. Металл с перегретой структурой отмечается пониженными пластическими свойствами, при его ковке возможно образование трещин, а после ковки изделие будет иметь пониженные механические свойства. Перегрев является браком нагрева металла. В большинстве случаев его исправляют последующей термообработкой (отжигом).

При нагреве до температур, несколько меньших температуры плавления [кривая АЕ на диаграмме железо–углерод (см. рис. 1)], наблюдается резкое снижение пластичности, являющееся результатом значительного роста зерен и последующего пережога металла, характеризуемого окислением границ зерен. Образующиеся по границам зерен оксиды имеют более низкую температуру плавления, чем зерна металла, границы зерен начинают оплавляться, и наступает полная потеря пластичности нагреваемого металла. Пережог – неустранимый брак, ликвидируемый только переплавкой металла. Температура пережога для некоторых марок углеродистых сталей составляет: для сталей 20; 45; У8 и У12 соответственно > 1350; 1350; 1200 и 1200 °С.

При недостаточном времени нагрева металл не успевает равномерно прогреться по всему сечению и имеет более низкую пластичность в центральной зоне заготовки. Деформация недогретого металла приводит к возникновению значительных внутренних напряжений и при обработке заготовки ковкой или штамповкой может привести к образованию трещин в осевой зоне заготовки.

Режим нагрева заготовок для ковки и штамповки

Режим нагрева заготовок определяет условия, необходимые для изготовления высококачественных поковок или штамповок. Он включает в себя следующие основные параметры: температуру печи при загрузке заготовок, скорость или длительность нагрева металла, конечную температуру нагрева, время выдержки при заданной температуре, общую продолжительность нагрева. Определяющими при выборе режима нагрева являются химический состав металла и размеры нагреваемых заготовок.

Температуру рабочего пространства печи устанавливают в зависимости от марки стали, размеров и формы нагреваемых заготовок. Подавляющее большинство заготовок из конструкционных сталей, имеющих диаметр или сторону квадрата до 100 мм, загружают в печь при температуре 1200…1300 °С. Для обеспечения максимальной производительности штамповочного агрегата (молота, пресса и т.п.), минимальных потерь металла в угар и на образование окалины, а также достаточно высокой температуры начала штамповки, нагрев металла выполняют с максимально допустимой скоростью нагрева (температурным напором). Скорость нагрева определяется увеличением температуры металла заготовки в градусах Цельсия за единицу времени, например, за минуту или час. Она зависит прежде всего от температуры рабочего пространства печи, теплопроводности металла, его теплоемкости, плотности, а также площади сечения заготовок и способа расположения заготовок в печи.

Теплопроводность – это способность вещества проводить теплоту от более нагретых частей к менее нагретым. Коэффициент теплопроводности показывает, какое количество теплоты (джоулей) проходит в 1 ч через 1 см2 сечения тела при разности температуры в 1 К на расстоянии 1 м. Чистое железо имеет коэффициент теплопроводности λ = 86 Вт/(м·К), легированная сталь 3Х2В8Ф – коэффициент

λ = 10,6 Вт/(м·К).

Величина теплопроводности при нагреве металла важна для установления технологических параметров процессов нагрева заготовок. Металлы и сплавы, обладающие высокой теплопроводностью, можно нагревать с большей скоростью, так как теплота с поверхности заготовок, получаемая от нагревательного устройства, будет передаваться к сердцевине металла интенсивно и вся заготовка прогреется достаточно быстро.

Теплоемкость – количество теплоты, поглощаемой телом при нагревании на 1 К, теплоемкость металла зависит от его химического состава и температуры. Чем выше теплоемкость металла, тем больше требуется времени для выравнивания температуры по сечению нагреваемой заготовки. С возрастанием температуры теплоемкость углеродистых сталей увеличивается. Легированные добавки в стали или сплаве уменьшают теплопроводность. Это обстоятельство влияет на время нагрева заготовок. Например, время выдержки заготовки в печи с момента приобретения металлом температуры штамповки или ковки рекомендуется принимать из следующего расчета.

1. Для конструкционных легированных сталей: 1 мин на каждые 4 мм диаметра (толщины) заготовки. (Максимальное время пребывания в печи при температуре штамповки заготовок диаметром или стороной квадрата до 250 мм не должно превышать 1…2,5 ч.)

2. Для теплоустойчивых, кислото- и коррозионно-стойких сталей: 1 мин на каждые 3 мм диаметра заготовки. (Максимальное время пребывания в печи при температуре штамповки заготовок диаметром или стороной квадрата до 250 мм не должно превышать 1…2,5 ч.)

3. Нагревать заготовки из жаропрочных сталей и сплавов при температуре нагрева до 800…900 °С следует медленней, чем заготовки из обычных конструкционных сталей. Начиная с 800 °С, нагрев может быть ускорен. Общее время нагрева должно быть увеличено в 2–3 раза по сравнению с конструкционными сталями.

4. Для равномерного прогрева (выдержки) титановых сплавов по сечению требуется ~ 40 с на 1 мм диаметра (толщины) заготовки при температуре 1000 °С и 60 с на 1 мм диаметра (толщины) заготовки при более низких температурах.

5. Для алюминиевых сплавов: 1…1,2 мин на 1 мм диаметра (толщины) при диаметре (толщине) нагреваемых заготовок до 100 мм и при толщине >100 мм – из расчета 0,8…1,0 мин на 1 мм толщины.

Теплоемкость металла в зависимости от температуры нагрева меняется незначительно.

Плотностью вещества называют массу, приходящуюся на единицу его объема. Плотность металлов существенно влияет на процесс нагрева. С ее повышением время для выравнивания температуры по сечению заготовки увеличивается.

Общим является то, что чем выше температура в печи, теплопроводность стали и меньше сечение нагреваемых заготовок и плотность их укладки на поду печи, тем выше скорость нагрева и меньше его продолжительность. Вместе с этим уменьшаются угар металла и обезуглероживание поверхности заготовки.

При чрезмерно большой скорости нагрева по сечению заготовки возникает большая разность температур (температурный градиент). Поверхность заготовки нагревается быстрее и до значительно более высоких температур, чем ее сердцевина. При этом в отдельных случаях (особенно в начальный период нагрева) в заготовке могут возникнуть значительные термические напряжения, уровень которых достигнет предела прочности стали, и образоваться трещины. Поэтому различают технически возможную скорость нагрева (определяется возможностями применяемого нагревательного оборудования) и допускаемую скорость, обусловливаемую допускаемыми термическими напряжениями и уровнем пластичности нагреваемого металла.

Охлаждение поковок и штамповок

Процесс охлаждения поковок или штамповок по своей сути является термической операцией. Образование трещин при охлаждении встречается более часто, чем при нагреве. Для предотвращения трещинообразования, уменьшения остаточных напряжений поковки охлаждают по специальному режиму, который в основном определяется в зависимости от химического состава стали и габаритных размеров поковок. Общим является то, что скорость охлаждения поковок не должна превышать определенных значений. Традиционно поковки из среднеуглеродистой стали охлаждают на воздухе в одиночку или на стеллажах; поковки из легированных сталей и сплавов – в штабелях и в зависимости от габаритных размеров, в печах по специальному режиму.

Применяемые способы охлаждения поковок следующие: на воздухе, в малотеплопроводных материалах (песке, чугунной стружке, шлаке, шлаковой вате, гравии и т.п.), в термостатах, неотапливаемых и подогреваемых колодцах, печах различной конструкции.

Отжиг поковок

После проведения деформации, в окончательно сформированной поковке, напряжения по сечению изделия неравномерны. Для устранения дефектов и выравнивания структуры, а также и снижения твердости проводят: отжиг. Отжиг, в зависимости от формы и хим. состава стали проводят с нагревом выше точек Ас3 или Ас1 диаграммы железоуглерод с последующим медленным охлаждением (от 150 °С/ч для углеродистых сталей до 15 °С/ч для легированных сталей) или изотермический отжиг с выдержкой ниже точки Ас1. Для некоторых видов изделий допускается проведение нормализации (нагрев на 30-50 °С выше точки Ас3) с последующим высоким отпуском для легированных сталей, без отпуска для углеродистых сталей.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]