Шкала твёрдости минералов: определение прочности по Моосу

Шкала твердости минералов или минералогическая шкала Мооса составлена на основании эталонных образцов по степени относительной твердости от 1 до10. Качественный порядковый показатель прочностной стойкости минералов, включённых в эту шкалу, выявляется путём царапания. Механическая способность более твёрдых материалов наносить царапины на более мягкие породы определяет относительную твёрдость минералов того или иного типа.

10 минеральных элементов Мооса представлены в качестве эталонных образцов и упорядочены в порядке возрастания, что позволяет наглядно определить, какой минерал твёрже. Так, например, тальк занимает первую позицию в таблице и считается наиболее мягким среди прочих представленных на шкале. По другую сторону расположился алмаз, который по критерию «прочность минерала» занимает самую вершину, то есть 10-ую позицию по шкале Мооса и не имеет аналогов в природе по этому показателю.

Определение твердости минерала

Твердость определяется следующим образом. На поверхности исследуемого минерала выбирают гладкую площадку и, взяв минерал из шкалы Мооса, проводят им по ней под острым углом с нажимом. Если на поверхности исследуемого образца остается царапина, то его твердость меньше, чем у эталонного минерала. Необходимо убедиться в том, что на исследуемом образце остается именно царапина (углубление), а не порошок эталонного образца.

Используя последовательно эталонные минералы от самого мягкого до наиболее твердого, добиваются такого положения, когда испытуемый образец располагается по своей твердости между двумя эталонными или испытуемый образец царапается эталонным и сам царапает его. В первом случае твердость исследуемого образца оценивается средней величиной, во втором — равна твердости эталонного. Например, если какой-нибудь минерал царапается кварцем и не царапается ортоклазом, то его твердость равна 6,5. Если же другой минерал царапается кальцитом и сам оставляет на нем царапину, то его твердость 3.

(При отсутствии шкалы Мооса твердость минералов можно определить и другими способами.

Так, у графита мягкого карандаша твердость около 1. Минералы с такой твердостью пишут на бумаге, не оставляя на ней царапины.

Минералы с твердостью до 2 царапаются ногтем; железный гвоздь, проволока имеют твердость 4 (бронзовая монета 3,5—4), стекло — 5, стальной нож, игла — 6. Кварц, имеющий твердость 7, широко встречается в природе)..

Следует иметь в виду, что отдельные минералы могут обладать различной твердостью в разных направлениях. Например, твердость дистена вдоль удлиненной грани равна 4, а перпендикулярно к ней —6.

Чтобы определить твердость минерала, представляющего собой порошкообразный или землистый агрегат, необходимо потереть этим порошком эталонный образец.

Если последний покроется царапинами, то твердость эталона меньше, чем исследуемого образца.

Важно подчеркнуть, что единицы твердости по шкале Мооса относительны. Так, например, алмаз по методу вдавливания имеет твердость 10 000 кг/мм2, а тальк — 43 кг/мм2, т. е. твердость алмаза больше твердости талька не в 10, а в 232 раза.

Как применить шкалу твердости для металлов.

Когда Вы решились на покупку изделия из драгоценного металла, но колеблетесь, украшение из какого материала предпочесть, то поможет именно шкала твердости по Моосу.

Сравнив коэффициенты, Вы определитесь с предварительным выбором и сможете решить, подходит ли Вам это изделие еще и по цене.

Например, платина гораздо более надежна, чем серебро, и в целом, более твердые служат дольше при постоянной носке. Однако платина, также, намного дороже серебра, таким образом, необходимо подумать, готовы ли Вы заплатить дополнительную цену за прочность.

Шкала Мооса. Твёрдость минералов

Шкала Мооса (минералогическая шкала твёрдости) — набор эталонных минералов для определения относительной твёрдости методом царапания.

В качестве эталонов приняты 10 минералов, расположенных в порядке возрастающей твёрдости.

Состоит из 10 эталонов твёрдости: тальк — 1; гипс — 2; кальцит — 3; флюорит — 4; апатит — 5; ортоклаз — 6; кварц — 7; топаз — 8; корунд — 9; алмаз — 10.

Минералы

с индексом ниже 7 считаются
мягкими
, выше 7 —
твердыми
.

В целом главная масса природных соединений обладает твердостью от 2 до 6.

Шкала твёрдости предложена в 1811 году немецким минералогом Фридрихом Моосом.

— это сопротивление, которое оказывает его поверхность при попытке поцарапать ее другим камнем или иным предметом

; твердость представляет собой меру связности атомной структуры вещества.

Твёрдость одного и того же камня может быть различной в разных направлениях

. Большим различием твердости в разных направлениях среди других минералов выделяется : твердость изменяется у него от 5 до 7, и в одних направлениях образец царапается ножом, а в других нет.

Значения шкалы от 1 до 10 соответствуют 10 распространённым минералам — от талька до алмаза

.

Твёрдость минерала измеряется путём поиска самого твёрдого эталонного минерала, который он может поцарапать; и/или самого мягкого эталонного минерала, который царапает данный минерал. Всё очень просто. Например, если минерал царапается апатитом, но не флюоритом, то его твёрдость находится в диапазоне от 4 до 5.

Промежуточные степени твёрдости камня выражаются в виде дробей. Так, число 8 1/2, относящееся к хризобериллу, означает, что он царапает топаз примерно так же, как сам царапается корундом.

Гранат пироп несколько тверже кварца (7) и несколько мягче берилла (7 1/2), поэтому его твердость обозначается как 7 1/4.

Важно помнить, что скрытокристаллические, тонкопористые и порошковатые разности минералов обладают ложными малыми твёрдостями

.
Например, гематит в кристаллах имеет твердость 6, а в виде красной охры меньше 4.
Каждый обладатель алмазного перстня знает, что алмаз легко царапает оконное стекло.

Алмазом стекло и режут. Если мы станем пробовать другие драгоценные камни, то обнаружится, что и они царапают стекло, но не так легко, а дальше — топаз царапает оконное стекло, но на самом топазе оставляет царапины корунд, который в свою очередь поддаётся всесильному и самому твёрдому алмазу.

Образцы одних и тех же минералов, полученные из разных мест, отличаются друг от друга по сложности процесса огранки и полировки.

Об алмазах с Калимантана и из Нового Южного Уэльса говорят, что они существенно тверже алмазов из Южной Африки и из других мест и что при их огранке возникают трудности.

Цейлонские сапфиры тверже, чем рубины, а кашмирские сапфиры — мягче.

Шкала Мооса предназначена для грубой сравнительной оценки твёрдости материалов по системе мягче-твёрже. Испытываемый материал либо царапает эталон и его твёрдость по шкале Мооса выше, либо царапается эталоном и его твёрдость ниже эталона.

Таким образом, шкала Мооса информирует только об относительной твёрдости минералов

.

Помимо шкалы Мооса, конечно же есть и другие методы определения твёрдости минералов, но различные шкалы твёрдости нельзя однозначно соотнести друг с другом

.

Практикой приняты несколько более точных систем измерения твёрдости материалов, ни одна из которых не покрывает весь спектр шкалы Мооса.

Таблица со шкалой сравнения

Сопоставление прочностной характеристики, полученной по различным методикам, с таблицей Мооса полезно в практическом применении камней. Абсолютные значения твёрдости определяют по другим оценкам, сравнение критериев видно в таблице.

Минералы и горные породыГрадация по МоосуПо Шрейнеру, МПаКрепкость по шкале Кнупа, единицТвёрдость шлифования в воде по РозивалюПрочность по микротвердомеру ПМТ-2, ПМТ-3, кг/мм²
Тальк1250―400120,032,4
Гипс2321,2540
Кальцит, мрамор, ангидрит3950―14001354,5110
Флюорит, доломит42500―32001605190
Апатит, гранит53000―37004006,5530
Ортоклаз, базальт6390050037790
Кварц, диабаз7630012501201120
Топаз815501751430
Корунд9190010002060
Алмаз10830014000010060

Причина твёрдости гранита заключается в сложном минеральном составе, где основные компоненты, кварц и слюда, отнесены к разным категориям — 7 и 2. Их количественное соотношение и определяет свойства горной породы.

С помощью шкалы Мооса сравнивают также твёрдость металлов — это удобно, когда подбирается оправа для драгоценного камня.

НаименованиеОловоЗолото, сереброМедь, бронзаНикельПлатинаПалладийТитанВольфрам
Значение по градации1,52,5―3344,54,767,5

Из таблицы видно, какие металлы могут поцарапать другие. Это обстоятельство важно учитывать при совместном хранении украшений.

Бытовые средства измерения твёрдости

Иногда для определения твёрдости приходится пользоваться средствами, которые есть под рукой

, хотя в некоторых случаях
они бывают недостаточно точны
(карандаш -1, соль поваренная — 2, ноготь — 2.5, медная монета — 3, железный гвоздь — 4, стекло — 5, стальной нож — 6, напильник — 7).

При определении твердости всегда следует испытывать свежую поверхность минерала.

хорошо запомнить:

  • ноготь оставляет царапину на гипсе и более мягких веществах
  • обычное оконное стекло немного мягче полевого шпата
  • стальное лезвие ножа немного твёрже полевого шпата, приближаясь по твердости к кварцу, и легко царапает стекло.

Классификация природных каменных материалов по твёрдости

ТвердыеСредней твердостиМягкие
Гранит, гнейс, диорит, сиенит, габбро, лабрадорит, тешенит, диабаз, кварцевый порфир, базальтМрамор (ахроматический и хроматический), конгломерат, брекчия, известняк, песчаник, вулканический туф, известковый туф, сланцыГипсовый, тальковый

Таблица соотношений между числами твердости по Бринеллю, Роквеллу, Виккерсу, Шору

Указанные значения твердости по Роквеллу, Виккерсу и Шору соответствуют значениям твердости по Бринеллю, определенным с помощью шарика диаметром 10 мм.

По РоквеллуПо БринеллюПо Виккерсу (HV)По Шору
HRCHRAHRBДиаметр отпечаткаHB
6584,52,3468894096
6483,52,3767091294
63832,3965986793
6282,52,4264384692
61822,4562781891
6081,52,47616
59812,560175686
5880,52,5458270483
57802,56573693
56792,655565379,5
55792,61551644
5478,52,6553461876,5
53782,68522594
5277,52,71510578
51762,754955671
50762,76492549
49762,81474528
48752,8546150965,5
47742,944448463,5
4673,52,93435469
45732,9542946161,5
4473341544259,5
42723,06398419
40713,1437839554
38693,2435436650
36683,34333342
34673,4431331944
32673,52298302
30663,628528840,5
28653,726927138,5
26643,825525636,5
24631003,924124234,5
226298422922932,5
2061974,121721731
1860954,220720629,5
59934,26200199
584,3419319227,5
57914,418718627
56894,4818017925

Отверстия под резьбу

Таблица сверл для отверстий под нарезание трубной цилиндрической резьбы.

Размеры гаек под ключ

Основные размеры под ключ для шестигранных головок болтов и шестигранных гаек.

Читать также: Как проверить реле давления

G и M коды

Примеры, описание и расшифровка Ж и М кодов для создания управляющих программ на фрезерных и токарных станках с ЧПУ.

Типы резьб

Типы и характеристики метрической, трубной, упорной, трапецеидальной и круглой резьбы.

Масштабы чертежей

Стандартные масштабы изображений деталей на машиностроительных и строительных чертежах.

Режимы резания

Онлайн калькулятор для расчета режимов резания при точении.

Отверстия под резьбу

Таблица сверл и отверстий для нарезания метрической резьбы c крупным (основным) шагом.

Станки с ЧПУ

Классификация станков с ЧПУ, станки с ЧПУ по металлу для точения, фрезерования, сверления, расточки, нарезания резьбы, развёртывания, зенкерования.

Режимы резания

Онлайн калькулятор для расчета режимов резания при фрезеровании.

Форматы чертежей

Таблица размеров сторон основных и дополнительных форматов листов чертежей.

CAD/CAM/CAE системы

Системы автоматизированного проектирования САПР, 3D программы для проектирования, моделирования и создания 3d моделей.

Линейная твёрдость

Линейная твёрдость определяется абсолютной шкалой твердости, а не шкалой Мооса.

Вот абсолютная шкала твердости:

Тальк — 1 — Скоблится ногтем Гипс — 3 — Царапается ногтем Кальцит — 9 — Царапается медной монетой Флюорит — 21 — Легко царапается ножом Апатит — 48 — С трудом царапается ножом Ортоклаз — 72 — Царапается напильником Кварц — 100 — Царапает оконное стекло Топаз — 200 — Легко царапает кварц Корунд — 400 — Легко царапает топаз Алмаз — 1600 — Не царапается ничем (а сам при этом легко царапает корунд)

ТвёрдостьМинералАбсолютная твёрдость

1Тальк (Mg3Si4O10(OH)2)1
2Гипс (CaSO4·2H2O)3
3Кальцит (CaCO3)9
4Флюорит (CaF2)21
5Апатит (Ca5(PO4)3(OH-,Cl-,F-))48
6Полевые шпаты (KAlSi3O8)72
7Кварц (SiO2)100
8Топаз (Al2SiO4(OH-,F-)2)200
9Корунд (Al2O3)400
10Алмаз (C)1500

Что тверже алмаза?

Было предпринято множество попыток создать или найти в природе материал, более прочный, нежели алмаз. Пока они не увенчались успехом: обсидан, титан, сверхтвердые сплавы, всевозможные инновационные материалы не могут посостязаться с благородным эталоном. Более того: многие химики и физики и вовсе утверждают, что вещества крепче алмаза (точнее, тверже) существовать не может.

Самая известная и скандальная история связана с веществом под названием лонсдейлит, в химическом и физическом смысле представляющим собой гексагональный алмаз. В 60-х годах минувшего столетия этот минерал был синтезирован искусственно, а чуть позже – в небольших количествах обнаружен в кратерах метеоритов.

В 2009 году группа китайских ученых опубликовала сенсационную работу, в которой утверждалось, что лонсдейлит тверже кубического (известного нам) алмаза более чем вполовину. К сожалению, эти данные оказались мистификацией и не подтвердились даже выкладками в вышеуказанной работе.

Самая удачная попытка создать вещество тверже алмаза была предпринята совсем недавно, в 2022 году. Дуэту американских ученых удалось получить алмазы-гексагоны из графита путем направленных взрывов. Полученные образцы продемонстрировали лучшую звукопроводность, нежели классический кубический алмаз, что теоретически свидетельствует о большей твердости.

К сожалению, проверить теоретические выкладки американских ученых опытным путем пока не удалось. А оскандалившийся лонсдейлит, полученный из графита путем воздействия колоссальным давлением, показывает прочность всего в 7-8 баллов по шкале Мооса. Да и использовать его вряд ли получится: он представляет собой кристаллики, видимые только под микроскопом, а получение этого вещества обходится фантастически дорого.


Золотая подвеска с коньячными бриллиантами (перейти в каталог SUNLIGHT)

Существуют и другие вещества, мало уступающие алмазу по твердости: фуллериты, всевозможные соединения бора, карбин и так далее. Они немногим мягче алмаза, но зачастую превосходят его по иным характеристикам: прочности, устойчивости к химическому воздействию и сверхвысоким температурам.

На основе кубического алмаза можно создать более прочное вещество (например, при помощи наноконструирования). Японцам это удалось, только как обрабатывать этот беспрецедентно твердый материал?

Имитации камней и проверка на твёрдость

Так как различные виды драгоценных камней имеют по меньшей мере такую же твёрдость, как и кварц (7), их легко можно отличить от внешне похожих на них «мягких» стеклянных изделий, имитирующих драгоценные камни, с помощью напильника (надфиля).

Особенно полезно такое испытание в случае алмаза, потому что он, будучи гораздо тверже любого другого драгоценного камня, оставляет на стекле царапину значительно более глубокую, чем это можно сделать рубином или сапфиром.

До того, как ввели в употребление рефрактометр, это был практически единственный метод проверки ограненных камней.

Если камень заключен в оправу, лучше всего его вынуть оттуда и провести испытание па ободке камня, поскольку поцарапанное место можно в этом случае полностью закрыть, снова вставив камень в оправу.

Для удобства испытания минералов на твердость применяют так называемые эталонные острия, в которых кусочки материала с известной твердостью вставлены в небольшие держатели.

Общая информация об алмазах

Знаете формулу алмаза? Ее может запомнить даже дошкольник, не имеющий понятия о химии. Это просто С, то есть, алмазы представляют собой чистейший углерод (в идеале, разумеется).

Что же должно было произойти, чтобы углерод превратился в алмаз? На этот счет выдвинуто множество гипотез. Самая убедительная из них утверждает, что алмазы образуются на очень большой глубине (свыше 200 км) и под грандиозным давлением – там углерод формирует особую кубическую решетку, присущую алмазам. Во время вулканических процессов кристаллы углерода выносятся ближе к поверхности, где их и обнаруживают алмазодобытчики.


Золотое кольцо с бриллиантами (перейти в каталог SUNLIGHT)

Процесс этот очень небыстрый: возраст алмазов измеряется в сотнях миллионов, а то и миллиардах лет. Так что когда в ходе интенсивной добычи алмазоносные кимберлитовые трубки и иные породы истощатся, запасы этого камня иссякнут ну очень надолго.

Согласно научным данным, некоторые алмазы имеют внеземное происхождение. Они прибыли к нам с метеоритами или попали к нам в результате взрыва сверхновой. Предполагается, что некоторые из них куда старше Солнечной системы!

Алмазов на Земле немало, но лишь мизерная их часть может быть превращена в бриллианты. Самые чистые и крупные алмазы (так называемые «капские») добывают в Африке, а российские запасы этого минерала сосредоточены преимущественно в Якутии.

Среди наиболее выдающихся свойств алмаза следует упомянуть следующие:

  • непревзойденную твердость – 10 по шкале Мооса;
  • самую высокую среди твердых тел теплопроводность – 900—2300 Вт/(м·К);
  • исчезающе низкий коэффициент трения по металлу (в воздушной среде);
  • тугоплавкость и устойчивость к воздействию высоких температур;
  • устойчивость к воздействию большинства агрессивных кислот и щелочей;
  • высокий показатель преломления лучей в сочетании с прозрачностью;
  • способность люминесцировать (светиться) в рентгеновских лучах и ультрафиолете.

Алмазы бывают не только белыми, но и окрашенными. Бурая и желтая окраска снижают стоимость бриллианта, голубая, синяя, розовая, красная, зеленая – повышают до заоблачных высот.

Главная характеристика, решающая судьбу необработанного алмаза – это прозрачность («чистая вода»). Именно поэтому черные алмазы (карбонадо) долгое время считались исключительно техническими. Однако изредка попадаются равномерно окрашенные черные алмазы, сохранившие некоторую прозрачность и характерный блеск. Стоят они умопомрачительно дорого.

ТВЕРДОЕ И ХРУПКОЕ

Следующим широко распространенным материалом является минеральное (или силикатное) стекло. До недавнего времени именно оно было стандартом в часовой индустрии и им оснащались даже дорогие и элитные модели. Базовый метод получения стекла заключается в плавлении при температуре выше 1000°С смеси кварцевого песка (Si02), соды (Na2C03) и извести (СаО), в результате которого получается химический комплекс с составом Na20*Ca0*6Si02. Введение в эту смесь дополнительных веществ позволяет существенно изменить физические свойства материала, сделав его пригодным для применения в различных отраслях. К примеру, оксид кремния добавит готовому изделию упругости, а оксид бария наделит стекло достаточно высоким уровнем радиационной защиты. Для придания стекломассе формы готового изделия используется широкий спектр методов: вытягивание, прокат, прессование, литье, выдувание и др., закрепление формы происходит резким охлаждением.

Минеральное стекло более хрупкое, чем пластик, но устойчивее к царапинам

По сравнению с пластиком, минеральное стекло обладает большей твердостью, следовательно, более устойчиво к царапинам и потертостям. Но радоваться рано: минеральное стекло легко может поцарапаться любым металлическим предметом или камнем. К счастью, так же, как и плексиглас, этот материал легко полируется, а «запаски» из него совсем недороги. Повысить до некоторой степени механические качества стекла позволяют различные меры вроде закаливания или нанесения на стекло покрытия из более прочного материала. Однако принципиальной прибавки твердости они не дают.

Можно ли алмаз поцарапать или разбить молотком?

Исходя из вышесказанного можно сделать вывод: поцарапать бриллиант невозможно. Это дает возможность быстро выявлять грубые подделки из стекла, легко царапающиеся стальной иглой или пилочкой для ногтей. Правда, имитации бриллианта вроде фианита, а тем более, карборунда, таким образом распознать невозможно.

А вот веществ прочнее алмаза предостаточно – да та же сталь! Это значит разбить алмаз вполне реально. Естественно, камень спокойно переживет падение со значительной высоты, да и если наступите на него, ничего критичного не приключится. Но если с силой ударить по алмазу молотком, он треснет, а то рассыплется в мелкую крошку.

Только делать этого не стоит: слишком дорогостоящим выйдет эксперимент, а мир лишится еще одного бриллианта, формировавшегося в течение сотен миллионов лет!

19.04.21

Где используются мягкие камни

Малая твёрдость плюс другие свойства определяют сферы использования мягких минералов:

  • Мягкие породы редко выступают самостоятельными игроками, чаще служа сырьём для производственных процессов или компонентом сложных веществ. Например, из мягкого молибденита получают редкоземельные металлы, его добавляют в смазки, используют в радиотехнике.
  • Лучшие образцы становятся экспонатами минералогических собраний или декоративно-поделочным материалом.
  • Самые известные мягкие поделочные камни – гипс и его разновидность селенит. Оба замечательно обрабатываются режущим инструментом.

Из мягких камней получаются красивые шкатулки, статуэтки, шары, пирамидки, прочая мелкая пластика.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]