Машина ржавеет на глазах. Какие виды коррозии существуют?

12.01.2022 Автор: VT-METALL

Из этого материала вы узнаете

:

  • 3 признака коррозии металла
  • Основные виды коррозии металлов в зависимости от типа агрессивной среды
  • Виды коррозии металлов по характеру разрушений
  • Защитные свойства оксидных пленок металлов
  • 5 способов защиты от коррозии металлов

Существуют различные виды коррозии металлов. Классифицируются они как по типу воздействия агрессивной среды: атмосферная, подземная, током; так и по характеру разрушений: сплошная, избирательная, локальная. Каждый металл и сплав по-разному сопротивляется процессу коррозирования.

Если говорить о естественной защите, то это оксидная пленка. Также применяются различные технологии по профилактике и недопущению коррозии. Самый простой и широко распространенный – окрашивание. О том, какие бывают виды коррозии металлов и способы защиты, вы узнаете из нашего материала.

Виды коррозии

Разнообразные металлы используются повсеместно. Почти все они со временем поддаются действию коррозии. Так называют процесс разрушения материала вследствие окисления. Именно поэтому вопрос защиты от коррозии так актуален. Своевременная обработка продлевает время эксплуатации металлических изделий, защищает от вредного воздействия окружающей среды.

Чтобы правильно защитить конструкцию от разрушения, необходимо разобраться в классификации коррозионных процессов. Это поможет корректно подобрать средство и способ обработки.

Выделяют три вида коррозии металла:

  • атмосферная;
  • жидкостная;
  • почвенная.

Атмосферная коррозия вызвана влиянием приземистого слоя атмосферы. При этом виде разрушения металлические изделия контактируют с кислородом и водяными парами воздуха. Химически активные вещества в качестве примесей ускоряют процесс разрушения металла.

Относительная влажность воздуха — основной критерий для деления на подвиды. Различают сухую, влажную и мокрую атмосферную коррозию. По своей сути первая является химическим процессом, а влажная и мокрая — электрохимическими.

Это самый распространенный вид разрушения, так как ему подвергаются все металлические конструкции, которые находятся на открытом воздухе. В частности, речь о:

  • трубопроводах;
  • металлических частях строений;
  • опорах;
  • мостах;
  • транспортных средствах.

Жидкостная коррозия поражает конструкции, находящиеся в жидкой среде. Условия взаимодействия с водой позволяют выделить следующие подвиды:

  • коррозия при неполном погружении — только часть конструкции находится в коррозионной среде;
  • по ватерлинии;
  • при полном погружении — металл полностью погружен в жидкость;
  • подводная;
  • коррозия при переменном погружении — конструкция погружается в жидкую среду периодически, полностью или частично.


На срок эксплуатации наземных и подземных металлических конструкций влияет состав грунта и грунтовых вод. Происходящие за счет этих особенностей химические процессы вызывают почвенную коррозию. Вследствие этого процесса ржавчина может появиться на:

  • трубопроводах;
  • подземных герметичных резервуарах;
  • опорах различных металлоконструкций.

Химическая коррозия в жидкостях-неэлектролитах

Хотя газовая коррозия считается наиболее распространенной, порчу металла при контакте с различными жидкостями-электролитами также не стоит сбрасывать со счетов. Большую опасность представляет контакт материала с веществами, способными проводить электричество.

Их делят на две крупные группы – органические и неорганические. Электролитов, представляющих большую опасность для металла, много – от расплавленной серы и бензола до жидкого брома, спирта, керосина, нефти и других.

Большое значение при протекании химической реакции играет чистота электролита. Когда он полностью чист, взаимодействия не наблюдается. Но стоит только попасть в состав небольшому количеству примесей, реакция начинает развиваться особенно стремительно.

Еще один дополнительный фактор риска – присутствие влаги. Тогда к опасности химической коррозии также прибавляется и угроза электрохимической.

Характерные типы поражения металлов ржавчиной

В большинстве случаев ржавчина возникает на поверхности металла. Однако в некоторых случаях поражение может проникнуть и вглубь. В зависимости от того, каким образом распространяется коррозия, она может быть:

  • равномерной — когда конструкция разрушается по всей поверхности, что характерно для сплавов с однофазной структурой;
  • местной (пятнами, язвенной, точечной) — поражает преимущественно многофазные сплавы с грубой структурой, реже чистые металлы или однофазные сплавы после разрушения защитной пленки;
  • межкристаллитной — самая опасная за счет того, что разрушение незаметно внешне, ей подвержены сплавы алюминия и хромоникелевые стали;
  • растрескивающей;
  • подповерхностной;
  • комбинированной.

Другой критерий для категоризации — это механизм коррозионного процесса. Согласно ему, коррозия может быть химической или электрохимической.

Химическое разрушение обусловлено окислением поверхности изделия в жидкой среде. Влиянию влаги из всех металлов сильнее всего подвержена сталь, за исключением нержавеющей. Содержащееся в ней железо образует три вида окислов. В большинстве случаев надежная защита стальной конструкции от разрушения невозможна. Также под действием жидкости быстро разрушаются кобальт, никель и свинец.

Электрохимическая коррозия сопровождается возникновением электрического тока. Может протекать в различных средах, всегда связана с серьезными разрушительными процессами. Например, если корродируют линии электропередач, элементы электрической цепи, то помимо самой коррозии, значительно возрастает энергопотребление.

Коррозия металлов и сплавов

Вопросы лекции:

1. Классификация коррозионных сред, разрушений и процессов. Показатели скорости коррозии.

2. Химическая коррозия: виды и разновидности.

3. Электрохимическая коррозия: причины и механизм возникновения.

4. Термодинамика и кинетика газовой и электрохимической коррозии.

1. Классификация коррозионных сред, разрушений и процессов. Показатели скорости коррозии.

Одним из весьма ощутимых проявлений окислительно–восстановительных процессов является коррозия — процесс окисления металлов под влиянием внешней среды.

Абсолютно коррозионно–стойких металлов нет. Золото — стойкое в обычных условиях — растворяется в растворах цианидов калия или натрия вследствие образования устойчивых комплексных ионов. В результате коррозии металлические изделия теряют свои ценные технические свойства, поэтому важное значение имеет антикоррозионная защита металлов и сплавов.

Коррозия (от латинского corrodo) — это разрушение конструкций и изделий из металлических материалов (металлов и сплавов), происходящее вследствие их физико–химического взаимодействия с окружающей средой, которую называют коррозионной (или агрессивной), а образовавшиеся химические соединения — продуктами коррозии.

Коррозия сопровождается выделением энергии (процессы коррозии протекают самопроизвольно и сопровождаются убылью энергии Гиббса (? G < 0) и рассеиваем продуктов коррозии в окружающей среде. Процесс коррозии железа и его сплавов называют ржавлением.

Коррозионные среды бывают жидкими и газообразными, токопроводящими и неэлектролитами, естественными и искусственно созданными.

К газообразным относятся природная атмосфера и газы, образующиеся при сгорании топлива или выделяющиеся в различных химических производствах.

Жидкие — это жидкости-электролиты (водные растворы солей, кислот, щелочей, морская вода) и жидкости неэлектролиты (сернистая нефть, бензин, керосин и др.).

Естественными, кроме атмосферы, являются вода и почва, искусственными— многие химические вещества.

По характеру разрушения поверхности различают коррозию:

а) сплошную (общую), при которой поражается вся поверхность изделия. Она бывает равномерной и неравномерной;

б) локальную (местьную), при котрой поражаются лишь отдельные участки поверхности. Она проявляется в виде пятен, язв и питтинга (точечного разрушения на большую глубину).

Существуют и другие виды разрушений:

1. эрозия — механическое истирание, износ (т.е. разрушения, происходящие только вследствие физических причин);

2. кавитационная коррозия — разрушение при одновременном ударном (механическое воздействие) и коррозионном воздействиях среды (коррозия лопастей гребных винтов),

3. коррозионная эрозия (разрушение при одновременном воздействии сил трения и коррозионной среды — коррозия насосов, двигателей, турбин) и др.

Коррозия металлов всегда представляет собой процесс окисления:

Ме – ne ? Меn+

По механизму процесса коррозию подразделяют на химическую и электрохимическую. Причина коррозии металлов и сплавов состоит в их термодинамической неустойчивости, поэтому коррозионные процессы протекают самопроизвольно и сопровождаются убылью энергии Гиббса ((? G < 0) . Чем меньше (более отрицательно значение ? G коррозионного процесса, тем выше термодинамическая возможность (вероятность) его протекания. Для химической коррозии изменение стандартной энергии Гиббса ? G связано с константой равновесия соотношением ? G0 = – RT ln Kp. В случае электрохимической коррозии ? G0 связана со стандартной ЭДС (Е0) уравнением ? G0 = nF·Е0.

По этой ссылке вы найдёте полный курс лекций по математике:

Решение задач по математике

Химическая и электрохимическая коррозия относятся к гетерогенным окислительно–восстановительным процессам, протекающим на поверхности металлов и сплавов (на границе раздела фаз материал — коррозионная среда).

Гетерогенный процесс состоит из последовательно протекающих стадий:

— диффузии частиц окислителя к поверхности металла,

— их адсорбции на ней,

— поверхностной химической реакции (в результате которой происходит окисление металла),

— десорбции продуктов с поверхности, их переноса в объем коррозионной среды.

Скорость коррозии определяется скоростью наиболее медленной (лимитирующей) в данных условиях стадии, которая может иметь как химическую (окисление металла), так и физическую (диффузия электролита или газа) природу.

Наиболее часто для характеристики скорости коррозии используют показатель убыли массы и глубинный показатель.

Показатель убыли массы rмасс. указывает потерю массы в единицу времени? с единицы поверхности S испытуемого образца:

rмасс. = ?m / ?·S

Глубинный показатель r глуб. определяется отношением средней глубины h разрушения металла в единицу времени ?:

r глуб. = h / ?

В справочной литературе r глуб. обычно приводится в мм/год.

2. Химическая коррозия: виды и разновидности.

Химическая коррозия характерна для сред, преимущественно не проводящих электрический ток (иключение: опыт №1 из лабораторной работы — там химическая коррозия протекает в растворе HCl). В зависимости от вида этих сред различают:

1. Химическую коррозию в жидкостях-неэлектролитах — неэлектропроводных жидких средах, обычно органического происхождения (сернистая нефть, керосин, бензол);

2. Химическую газовую коррозию (в дальнейшем газовую), протекающую обычно при высоких температурах.

Эти два вида химической коррозии не сопровождаются возникновением электрического тока, т.е. представляют собой обычное окислительно-восстановительное (химическое) взаимодействие металла с окружающей средой.

Газовая коррозия является наиболее часто встречающимся видом химической коррозии и обычно протекает при высоких температурах в газах и парах агрессивных веществ, когда исключена возможность их конденсации на поверхности металла, поэтому ее называют высокотемпературной коррозией. Это коррозия сопел ракетных двигателей, лопаток газовых турбин, элементов электронагревателей и др. К газовым коррозионным агентам относятся О2, СО2, SO2, H2O, H2S, Cl2.Их агрессивность по отношению к различным металлам не является одинаковой, следовательно, и скорость коррозии различается.

Рассмотрим пример наиболее часто встречающейся на практике газовой коррозии:— коррозия железа, чугуна и сталей в атмосфере О2,, СО2, и H2O:

При нагревании этих материалов происходит их окисление:

Fe + H2O ? FeO + H2

Fe + CO2 ? FeO + CO

2Fe + O2 ? 2FeO

Состав продуктов окисления определяется главным образом температурой газовой коррозионной среды.

Наряду с окислением, в сталях и чугуне протекает процесс обезуглероживания — обеднения поверхностного слоя углеродом вследствие взаимодействия карбида железа, содержащегося в них, с кислородом и кислородсодержащими реагентами:

Fe3C + O2 ? 3Fe + CO2

Fe3C + CO2 ? 3Fe + 2CO

Fe3C + H2O ? 3Fe + CO + H2

При этом ухудшаются их механические и антикоррозионные свойства.

Обезуглероживание может происходить и в атмосфере водорода:

Fe3C + 2H2 ? 3Fe + CН4 ?

Этот вид газовой коррозии называют водородной. Наряду с обезуглероживанием одновременно осуществляется и наводороживание — проникновение атомарного водорода в материал и последующее его растворение в нем, что ведет к резкому снижению пластичности металла.

3. Электрохимическая коррозия: причины и механизм возникновения.

На практике чаще всего приходится иметь дело с электрохимической коррозией. Она, в отличие от химической, сопровождается возникновением электрического тока и протекает, как правило, в средах с хорошей ионной проводимостью.

По условиям осуществления различают:

— коррозию в электролитах;

— атмосферную коррозию;

— электрокоррозию;

— коррозию под напряжением и др.

Причинами возникновения электрохимической коррозии служат различные виды неоднородностей как самой поверхности металла или сплава, так и коррозионной среды. В результате вся поверхность, соприкасающаяся с токопроводящей коррозионной средой, разделяется на катодные и анодные участки, которые имеют очень малые размеры и чередуются друг с другом. В такой среде они представляют собой совокупность огромного числа короткозамкнутых коррозионных гальванических элементов, вследствие чего электрохимическую коррозию часто называют гальванической коррозией.

В СИСТЕМАХ ВОЗМОЖНО ВОЗНИКНОВЕНИЕ КОРРОЗИОННЫХ НЕ ТОЛЬКО МИКРО-, НО И МАКРОЭЛЕМЕНТОВ, НАПРИМЕР, ПРИ КОНТАКТЕ С ЭЛЕКТРОЛИТОМ ДВУХ СОПРИКАСАЮЩИХСЯ ДЕТАЛЕЙ, ИЗГОТОВЛЕННЫХ ИЗ МЕТАЛЛОВ РАЗЛИЧНОЙ АКТИВНОСТИ (ТАК НАЗЫВАЕТАЯ КОНТАКТНАЯ КОРРОЗИЯ).

Механизм электрохимической коррозии сводится к возникновению и функционированию коррозионных гальванических макро- и микро-элементов., поэтому ее процессы аналогичны процессам, протекающим в химических источниках тока: гальванических и топливных элементах, аккумуляторах. Основное отличие коррозионных процессов — отсутствие внешней цепи. Электроны в процессе коррозии не выходят из корродирующего металла, а перемещаются внутри него от анодных участков к катодным.

Процесс электрохимической коррозии представляет собой совокупность двух взаимосвязанных полуреакций., одновременно протекающих на поверхности металла:

а) анодной, сопровождающейся окислением атомов металла на анодных участках поверхности:

(–) А: Ме – ne ? Меn+

б) катодной, сопровождающейся восстановлением окислителя (окисленной формы компонента Оф) коррозионной среды (электролита) на катодных участках поверхности:

(+) К: Оф + ne ? Вф

Окислители электрохимической коррозии называют деполяризаторами. К наиболее часто встречающимся деполяризаторам относятся молекулы О2, Н2О и ионы водорода Н+. Основными катодными реакциями с их участием при электрохимической коррозии являются:

1) в аэрированных (насыщенных кислородом) коррозионных средах:

нейтральных и щелочных (рН ? 7)

(+) К: О2 + 2Н2О + 4е ? 4ОН– (?0 = 0,401 В);

в кислотных (рН < 7)

(+) К: О2 + 4Н+ + 4е? 2Н2О (?0 = 1,229 В);

2) в деарированных (несодержащих растворенный кислород) коррозионных средах:

нейтральных и щелочных (рН ? 7)

(+) К: 2Н2О + 2е ? Н2 ? + 2ОН– (?0 = –0,828 В);

в кислотных (рН < 7)

(+) К: 2Н+ + 2е? Н2 (?0 = 0 В);

Коррозию, сопровождающуюся восстановлением молекул кислорода (в аэрированных средах) называют коррозией с поглощением кислорода или коррозией с кислородной деполяризацией.

C кислородной деполяризацией протекают следующие виды электрохимической коррозии: атмосферная, подземная, в воде (пресной и морской), растворах солей. Коррозию, сопровождающуюся восстановлением молекул воды и ионов водорода называют коррозией с выделением водорода, или коррозией с водородной деполяризацией. В некоторых условиях электрохимическая коррозия может протекать одновременно и с водородной, и с кислородной деполяризацией — так называемый смешанный вид деполяризации.

Процессы, описываемые записанными выше уравнениями, называют первичными процессами, а их продукты — первичными продуктами коррозии. Кроме первичных при электрохимической коррозии протекают еще и вторичные процессы — химические взаимодействия первичных продуктов друг с другом, с компонентами электролитной коррозионной среды, с растворенными в ней газами и др. При этом образуются пленки малорастворимых вторичных продуктов, например, гидроксидов, фосфатов металлов, которые затрудняют доступ электролита к поверхности металла. В результате снижается скорость электрохимической коррозии, а иногда коррозия и совсем прекращается.

Рассмотрим наиболее характерные и часто встречающиеся на практике случаи электрохимической коррозии.

— Коррозионное разрушение сплава обусловлено его неоднородностью по химическому составу (пример из лабораторной работы, либо из контрольной работы).

— Контактная коррозия связана с конструктивными особенностями изделий и машин и имеет место при их эксплуатации в реальных условиях. Часто в одном узле контактируют детали из разных металлов. В возникающем в электролитной среде коррозионном гальваническом макрогальваноэлементе катодом является деталь, металл которой имеет больший потенциал, анодом — деталь, изготовленная из металла с меньшим потенциалом. На рис.1 показана схема контактной коррозии двух листов железа, соединенных медными заклепками. Функционирует коррозионный гальванический макроэлемент.

Возможно вам будут полезны данные страницы:

Отыскание оригинала по изображению
Теория якорных обмоток машин постоянного тока
Допускаемые напряжения условие прочности
Односторонние пределы, правосторонний предел, левосторонний

Скорость этой разновидности электрохимической коррозии в целом тем больше, чем дальше отстоят друг от друга в ряду напряжений металлы, из которых изготовлены детали, образующие макрогальваноэлемент.

— Коррозия под напряжением — разрушение деталей, находящихся в электролитной среде в механически напряженном состоянии. Механические напряжения изменяют потенциал металла: потенциал металла растянутой поверхности будет меньше потенциала металла без напряжения, а потенциал металла сжатой, наоборот, больше потенциала металла без напряжения. В связи с этим растянутая поверхность будет являться анодной, сжатая — катодной. Поэтому если пластину из стали, дюраля или титанового сплава согнуть и в таком состоянии поместить, например, в коррозионную среду с рН < 7, то растянутая поверхность начнет корродировать и на ней через короткое время появятся трещины, а сжатая будет оставаться без изменений (рис.2).

Рис.2 Коррозионное разрушение детали, находящейся в механически напряженном состоянии:

1– стальная пластина; 2– тефлоновая подставка; 3 – кислотная коррозионная среда.

— Коррозия под действием блуждающих токов (электрокоррозия). Блуждающими называют токи, ответвляющиеся от своего основного пути. Это токи утечки из электрических цепей или любые токи, попадающие в землю от внешних источников (пути электропоездов, заземления линий тока, электрические кабели и т.п.).

Блуждающие токи вызывают коррозию газо– и нефтепроводов, электрокабелей, различных металлических подземных сооружений. Радиус их действия исчисляется десятками километров. Обычно коррозионные разрушения бывают локального типа и располагаются в местах выхода токов в землю или воду. Для подземных трубопроводов и путей электропоездов это, как правило, места изолированных сочленений и плохого контакта рельсов на стыках соответственно, а также места с недостаточной изоляцией от земли. Они являются анодными зонами и подвергаются усиленной коррозии (рис. 3).

Рассмотренные случаи не исчерпывают всего многообразия электрохимических коррозионных процессов, но дают представления об основных видах неоднородностей, характере взаимодействия изделий с коррозионной средой и причинах возникновения потенциалов в коррозионных средах.

Рис. 3. Схема возникновения блуждающих токов от трамвайной линии и механизм коррозионного разрушения ими рельсов и трубопровода.

3. Термодинамика и кинетика газовой и электрохимической коррозии

Термодинамика и кинетика газовой коррозии.

На практике газовая коррозия чаще всего проявляется как коррозия металлических материалов при высокой температуре в атмосфере кислородсодержащих газов, поэтому ее помимо высокотемпературной коррозии нередко называют высокотемпературным окислением.

На поверхности изделий из металлов и сплавов в результате их взаимодействия с такой коррозионной средой образуется пленка продуктов, представляющих собой различные оксиды металлов. Процесс может быть описан следующим уравнением:

х Ме (т) + у О2(г) ? МехОу(т)

Реакция окисления обратима и ее константа равновесия:

Кр = 1/ Ру/2равн О2 (РравнО2 – равновесное парциальное давление О2)

Термодинамическую возможность протекания процесса окисления в конкретных условиях можно оценить с помощью уравнения:

?GT = ?G0T + RT ln 1/ Ру/2равн О2

Если образовавшаяся на поверхности металла оксидная пленка препятствует дальнейшему проникновению коррозионной среды к поверхности металла, то ее называют защитной. Металл с защитной пленкой на поверхности становится химически неактивным, т.е. пассивным. Начальная стадия образования защитной оксидной пленки — исключительно химический процесс. Дальнейшее протекание процесса определяется скоростью встречной диффузии ионов металла и кислорода внутри оксидной пленки.

В оксидных пленках определенной толщины и совершенной структуры (без трещин, пор) процессы встречной диффузии прекращаются. Такие пленки и являются защитными. Чтобы обладать защитными свойствами, оксидная пленка должна удовлетворять следующим требованиям: быть сплошной, беспористой, химически инертной к агрессивной среде, иметь высокие твердость, износостойкость, адгезию (прилипаемость к металлу) и близкий к металлу коэффициент термического расширения. Главным требованием является условие сплошности Пиллинга –Бедвордса, согласно которому объем образовавшегося оксида должен быть больше израсходованного на окисление объема металла —

VМехОу > VMe

Отношение этих объемов называют фактором сплошности Пиллинга–Бедвордса ?, который рассчитывают, используя молярную массу атомов Мме и плотность ?ме металла, а также молярную массу ММехОу и плотность ?МехОу его оксида:

а = VМехОу / VMe = ММехОу · ?ме / ?МехОу · m Мме

где m — число атомов металла в молекуле оксида. Величину ? для многих металлов и их оксидов можно найти также в справочной литературе. Если а > 1, то формирование и рост толщины пленки при окислении происходит в условиях сжатия, поэтому она является сплошной. Если а < 1, топленка в процессе своего формирования и роста испытывает растяжения, которые способствуют ее разрушению и появлению трещин, различных дефектов, вследствие чего кислород свободно проникает к поверхности металла.

По фактору сплошности Пиллинга–Бедвордса можно лишь приблизительно оценить защитные свойства оксидных пленок. В реальных условиях у сплошных пленок (а > 1) может и не быть защитных свойств, как, например, у FeO, MoO3, WO3. Поэтому очень ориентировочно считают, что если 1,0 < а < 2,5, то пленка сплошная и может обладать защитными свойствами. Причинами плохих защитных свойств у пленок с а > 2,5 могут быть летучесть оксида, напряжения разрушающие оксидную пленку, ее недостаточная пластичность и др.

Выполнение условия сплошности всегда является необходимым, но недостаточным требованием.

При формировании и росте защитной оксидной пленки важным является также и условие ее ориентационного соответствия металлу, т.е. максимального сходства кристаллическитх решеток металла и образующегося оксида.

Законы роста толщины оксидных пленок

Обычно скорость газовой коррозии, т.е. процесса окисления, выражают через скорость роста толщины ? оксидной пленки во времени ?:

r = d ? / d ?

Рост толщины, т.е. окисление поверхности металла, может проходить в соответствии с различными кинетическими зависимостями, или законами: линейным, параболическим, логарифмическим (рис. 4.)

Согласно линейному закону, скорость процесса окисления постоянна во времени. Этот закон выполняется как при полном отсутствии оксидной пленки на поверхности, так и при наличии тонкой или незащитной (пористой, несплошной) оксидной пленки, у которой а < 1. Во всех этих случаях доступ к поверхности свободен. По линейному закону происходит окисление щелочных и щелочноземельных металлов, а также ванадия, вольфрама и молибдена при высоких температурах. У первых оно обусловлено их разогревом из-за плохого отвода теплоты, вызванного образованием на поверхности рыхлых оксидных пленок, препятствующих ее оттоку, у вторых — летучестью их оксидов при высоких температурах.

В соответствии с параболическим законом скорость процесса окисления обратно пропорциональна толщине оксидной пленки. Этот закон соблюдается, когда на поверхности металла при его окислении образуется пленка, обладающая защитными свойствами, т.е. сплошная и непористая, для которой а > 1 Согласно параболическому закону, окисляются вольфрам, кобальт, никель (за исключением начальных участков), а также медь в интервале температур 300….1000°С и железо — 500…1000°С.

Логарифмический закон имеет место, когда происходит либо уплотнение защитной оксидной пленки, либо появление в ней дефектов в виде пузырей или расслоений, тормозящих процессы встречной диффузии ионов кислорода и металла.

При этом наблюдается сильное затухание процесса окисления, и рост толщины оксидной пленки осуществляется медленнее, чем по параболическому закону.

В соответствии с логарифмическим законом, окисляются медь при температуре ниже 100°С, тантал — ниже 400°С, а также алюминий, цинк и никель — ниже 3000°С. Скорость процесса окисления в этом случае обратно пропорционально времени его протекания.

Процесс окисления большинства металлов с изменением условий (температуры, состава газовой корроозионной среды, времени контакта) протекает по различным законам. Например, для титана:

Температура, °С < 350 630–830 > 850

Закон роста толщины

оксидной пленки… логарифмический параболический линейный

Помимо внутренних факторов (состояние оксидной пленки) на скорость газовой коррозии значительно большее влияние оказывают внешние факторы, такие как: состав, давление, температура и скорость движения газовой среды, время ее контакта, режим нагрева. При повышении температуры, с одной стороны, понижается термодинамическая возможность газовой коррозии, с другой, — увеличиваются константа скорости химической реакции и коэффициент диффузии, а также изменяются защитные свойства оксидной пленки. В целом с ростом температуры скорость коррозии увеличивается в соответствии с зависимостью, близкой к экспотенциальной. Колебания температуры, особенно попеременный нагрев и охлаждение, вызывают быстрое разрушение защитной пленки из-за возникновения больших внутренних напряжений.

Термодинамика и кинетика электрохимической коррозии.

Возможность электрохимической коррозии, как и любого химического процесса, определяют по изменению энергии Гиббса. Поскольку коррозия является самопроизвольно протекающим процессом, то сопровождается ее убылью, т.е. ?Gт < 0. Так как электрохимическая коррозия связана с функционированием коррозионного Г.Э., то возможность ее протекания можно оценить и по знаку ЭДС. Последняя связана с энергией Гиббса соотношением:

nFE0 = – ?G0

Отрицательному значению ?Gт соответствует положительное значение ЭДС.

Общая скорость электрохимической коррозии

определяется скоростью лимитирующей реакции (либо катодной, либо анодной). Но поскольку катодная и анодная реакции протекают взаимосвязано, то замедление одной тормозит другую.

Изменение температуры может ускорять или замедлять процесс электрохимической коррозии. Так, например с увеличением температуры уменьшается концентрация газообразных растворенных веществ (О2, Сl2), участвующих в электродных процессах, но снижаются защитные свойства пленок из вторичных продуктов (малорастворимых солей, гидроксидов), может измениться и полярность (катодные или анодные) металлических защитных покрытий.

По влиянию кислотности раствора (рН среды) на скорость электрохимической коррозии все металлы подразделяются на пят групп, каждая из которых имеет свой вид зависимости (рис. 5):

1) металлы с высокой коррозионной стойкостью в кислотных, нейтральных и щелочных растворах, такие как Ag, Au, Pt и др. Скорость их коррозии не зависит от рН раствора (рис. 5, а);

2) металлы, устойчивые в кислотных растворах, но нестойкие в щелочных — Mo, Ta, W и др. (рис.5, б);

3) металлы, малостойкие в кислотных растворах, но устойчивые в щелочных — Ni, Cd и др. (рис. 5, в);

4) металлы, устойчивые в растворах, близких к нейтральным, но разрушающиеся в щелочных и кислотных из-за амфотерности — Zn, Al, Sn, Pb (рис. 5, г). Каждый их них имеет свое определенное значение рН, при котором скорость коррозии минимальна: 7(Al). 5(Pb). 9 (Sn), 10(Zn), 14(Fe);

5) металлы, малостойкие в кислотных растворах, в интервале значений рН 4…8,5 имеют постоянную скорость коррозии, которая при рН > 10 резко уменьшается вследствие образования на их поверхности малорастворимых гидроксидов — Fe, Mg, Cu, Mn и др.

Коагуляцию вызывают ионы, которые имеют знак заряда, противоположный знаку заряда гранул. Коагуляцию положительно заряженных ионов вызывают анионы, отрицательно заряженных – катионы.

2. Коагулирующее действие ионов тем сильнее, чем выше заряд иона коагулянта (правило Шульце-Гарди)

РAl3+ > PCa2+ > PK+;

PPO > PSO > PCl-.

3. Для ионов одного заряда коагулирующая способность зависит от радиуса сольватированного иона: чем больше радиус, тем больше коагулирующая способность

PCs+ > PRb+ > PK+ > PNa+ > PLi+;

PCNS- > PI- > PBr- > PCl-.

ВОПРОС 6. Явления, протекающие на границах раздела фаз, а также связанные с изменением концентраций третьего компонента на этих границах, называются поверхностными явлениями.

Важнейшее свойство поверхностного слоя состоит в том, что находящиеся в нем молекулы обладают избыточной энергией Гиббса по сравнению с молекулами внутренней части той же фазы.

На примере жидкости это можно объяснить следующим образом: для внутренних молекул равнодействую- щая всех межмолекулярных взаимодействий равна 0, а для

поверхностных молекул она направлена

Рис. 1. Образование избытка перпендикулярно поверхности внутрь

поверхностной энергии. фазы (рис. 1). Т.е. на молекулу «В»,

находящуюся на границе с паром, молекулы жидкости действуют только с одной стороны; со стороны пара силы взаимодействия малы, в результате чего возникает равнодействующая, направленная внутрь жидкости. Поэтому молекулы «В» стремятся втянуться внутрь жидкости, вследствие чего поверхность раздела жидкости стремится к уменьшению.

В свободной капле жидкости стремление к уменьшению поверхности приводит к ее сферической (шарообразной) форме. Для выведения молекул на поверхность нужно преодолеть эту силу, т. е. совершить работу и сообщить молекулам определенную энергию, и если площадь поверхности увеличивается на какую-то величину, то на какую-то величину возрастает и поверхностная энергия.

Величина работы, которую необходимо затратить на увеличение поверхности на 1см2, численно равна свободной поверхностной энергии на 1см2 поверхности и называется поверхностным натяжением ? (сигма). Единицы измерения Дж/м2 и Н/м.

Свободная энергия любой поверхности раздела фаз (поверхностная энергия) может быть рассчитана по уравнению

Gs= ?.S,

где ? – поверхностное натяжение на границе раздела фаз; S – площадь поверхности.

С термодинамической (энергетической) точки зрения колллоидно-дисперсные системы, обладая высокой поверхностной энергией, являются системами неустойчивыми. В них самопроизвольно должны протекать процессы, уменьшающие поверхностную энергию GS, например, путем укрупнения частиц дисперсной фазы (уменьшения энтропии).

Для чистых жидкостей ? постоянна при данной температуре. Вещества, понижающие поверхностное натяжение растворителя, называются поверхностно-активными (ПАВ). Молекулы ПАВ состоят из полярных групп –ОН, -NH2, — COOH и др. («голова») и неполярной части («хвост»).

полярная неполярный

«голова» «хвост»

Такое строение придает ПАВ дифильность (двойственность) свойств. Полярная группа гидратируется, что определяет сродство ПАВ к воде – гидрофильность; неполярный радикал обусловливает растворимость этих веществ в воде и придает ПАВ гидрофобность. ПАВ применяется в качестве стабилизаторов – специальных веществ, не придающих коллоидным растворам устойчивость против укрупнения частиц дисперсной фазы.

Изменение концентрации растворенного вещества в поверхностном слое раствора (или на границе раздела фаз) называют адсорбцией. Если вещество поглощается всем объемом растворителя, то такой процесс называют абсорбцией.

Поверхностные явления определяют такие процессы, как пропитку, экстракцию, флотацию, смазку и др.

Флотация – метод обогащения полезных ископаемых, основанный на различной смачиваемости водой ценных минералов и пустой породы.

Промышленные способы защиты

Способы защиты металла от коррозии в промышленных целях включают:

  • термическую обработку;
  • лакокрасочное покрытие;
  • пассивацию или легирование;
  • защитное покрытие из металла;
  • электрозащиту;
  • применение ингибиторов.

Термическая обработка сводится главным образом к повышению жаропрочности металлов. Этого можно достичь различными путями. Такой способ защиты нацелен на борьбу с избирательным, точечным и межкристаллическим разрушением. Вследствие термообработки устраняется структурная неоднородность, сплав лишается внутреннего напряжения.

Защита от коррозии с помощью лакокрасочного покрытия весьма популярна благодаря надежности. Это доступный способ с простой технологией, позволяющий к тому же изменить цвет и внешний вид конструкции. В результате применения такой технологии защиты на поверхности изделия образуется сплошная пленка. Она препятствует разрушению металлической конструкции, защищает от агрессивного воздействия окружающей среды. Антикоррозионные лакокрасочные материалы обычно состоят из пленкообразующих веществ, растворителей, пластификаторов, пигментов, наполнителей, катализаторов. Эффективность применения такого способа во многом зависит от правильной технологии нанесения и подготовки поверхности. Немаловажным фактором является толщина покрытия.

Пассивация заключается в добавлении легирующих компонентов при плавке металлов. К таким примесям относятся хром, никель, молибден. Этот действительно эффективный способ замедляет анодный процесс. Металлический сплав переходит в состояние повышенной устойчивости к разрушению — происходит пассивация. На поверхности образуется оксидная пленка, обладающая совершенной структурой. Таким образом обрабатывают железо, алюминий, медь, магний, цинк, сплавы на их основе. В результате пассивации металлы приобретают не только коррозионную стойкость, но и жаропрочность.

Металлическое покрытие получило широкое распространение в качестве защитного средства. Оно может быть катодным или анодным. Целостность защитного слоя гарантирует эффективную защиту металла от нежелательного воздействия. Однако повреждение или образование пор на внешнем слое может спровоцировать окисление внутреннего. Поэтому данный способ вызывает споры. Формирование защитного металлического покрытия может происходить по-разному:

  • электрохимическим путем;
  • погружением в расплавленный металл;
  • нанесением расплавленного покрытия на обрабатываемую поверхность струей сжатого воздуха;
  • химическим.

Электрозащиту применяют, когда нужно защитить котлы, стальные детали, подводные детали морского транспорта, детали буровых платформ. Изделие подключают к отрицательному полюсу источника тока. Благодаря этому ток в электролите проходит через пластины-аноды, а не через защищаемую деталь.

Ингибиторами называют вещества, замедляющие или останавливающие химические реакции, которые провоцируют возникновение ржавчины. При введении в агрессивную среду ингибиторы создают на поверхности изделия адсорбционную пленку. Благодаря ей происходит изменение электрохимических параметров металлов, электродные процессы замедляются. Это эффективное и технологически несложное защитное мероприятие.

Бытовые способы защиты

Способы защиты от коррозии, которые применяются в быту, отличаются простотой и доступностью. Все мероприятия сводятся к нанесению лакокрасочных покрытий. Защита металла предполагает использование различных по составу средств. Среди компонентов могут быть:

  • смолы на основе силикона;
  • полимерные материалы;
  • ингибиторы;
  • металлические опилки.

В случае, если ржавчина уже повредила металлическую поверхность, предотвратить распространение коррозии можно при помощи:

  • Грунтующих средств. Они обеспечивают хорошую адгезию, поэтому их нанесение на поверхность перед покраской экономит расход финишного покрытия. В составе содержатся ингибирующие вещества, за счет чего грунты так эффективны при защите металла от коррозии.
  • Стабилизаторов — с их помощью происходит преобразование оксидов железа в другие вещества. Такие химические соединения не подвержены ржавлению.
  • Веществ, преобразовывающих оксиды железа в соли. Замедляют повторное образование ржавчины.
  • Смол и масел. Их действие заключается в нейтрализации ржавчины. Масла и смолы связывают ее частицы, уплотняя их.

Если при обработке поверхности с целью предотвращения коррозии используется несколько средств, лучше чтобы они были от одного производителя. Они должны подходить друг другу по химическому составу.

Работы по нанесению лакокрасочных средств в домашних условиях можно провести самостоятельно. В большинстве случаев для этого не требуется привлекать мастеров.

В быту чаще всего нуждаются в такой обработке следующие металлоконструкции:

  • крыши;
  • ворота;
  • различные ограждения;
  • спортивные снаряды;
  • трубы;
  • радиаторы;
  • дверцы и ручки.

Обрабатывать можно как новые изделия для предотвращения их разрушения, так и те, которые эксплуатируются уже много лет, но их срок службы необходимо продлить.

Как провести обработку металла своими руками?

Самостоятельно проведение антикоррозионных работ требует соблюдения определенной последовательности действий:

  1. Поверхность, которую нужно уберечь от коррозии, необходимо подготовить. Ее тщательно очищают от пятен масла, ржавчины и прочих загрязнений. Это можно сделать при помощи металлических щеток или специальных насадок для болгарки.
  2. Когда поверхность должным образом подготовлена к нанесению грунтовки или преобразователя ржавчины, наносят слой средства. Он должен полностью впитаться и просохнуть.
  3. После этого на поверхность металла наносят защитную краску. Необходимо нанести два слоя, дав хорошо высохнуть каждому. Стоит позаботиться о защитных средствах для выполнения работ: перчатках, очках, респираторе.

Это стандартная схема обработки металлической поверхности для защиты от разрушения.

Факторы скорости протекания газовой химической коррозии

По мере исследования особенностей процесса протекания химической коррозии, ученые смогли определить важные факторы, которые влияют на ее скорость и другие особенности. К ним относятся такие, как:

  • Температура среды, в которую погружен металл.
  • Состав сплава и другие особенности металла.
  • Особенности газовой среды, ее состав, преобладающие элементы.
  • Длительность контактирования материала с коррозийной средой.
  • Появляющийся продукт коррозии.

Как и в случае с другими типами коррозийных поражений, большое значение имеет тип и особенности создающейся на поверхности оксидной пленки.

Защитные краски для металла

Нанесение на металлическую поверхность специальных защитных красок — одно из самых эффективных средств против коррозии. При высыхании они образуют твердую пленку с пигментами. Толщина этой пленки может варьироваться в зависимости от назначения металлического изделия. Толщина и характер взаимодействия краски с поверхностью определяют защитные свойства покрытия.

Антикоррозионные средства по металлу можно разделить на три группы:

  • грунтовки;
  • краски;
  • средства для нанесения прямо поверх ржавчины.

Выбирая защитную краску, важно учитывать свойства металлической поверхности, на которую она будет наноситься. Например, для черных металлов, таких как сталь, лучше выбрать грунтовку, содержащую цинк. Дело в том, что оцинкованная поверхность в течение долгого времени способна противостоять разрушениям. Как правило, инструкция содержит информацию о том, для какого типа поверхности предназначается данный продукт.

Краска по ржавчине становится удачным решением в ситуации, когда поверхность невозможно качественно очистить от ржавчины. Она проста и удобна в использовании, ложится ровным плотным слоем. Покрытие, которое создает такая краска, отличается прочностью и устойчивостью к коррозии. Несмотря на то что на металлической поверхности уже имеются коррозионные очаги, краска по ржавчине не позволит им увеличиваться и распространяться.

Большинство средств подходят для того, чтобы наносить их вручную в бытовых условиях. Некоторые краски лучше ложатся, если их распылять. В составе красок учитывают то, что они будут использоваться в том числе для защиты конструкций, находящихся на улице. Средства можно наносить в уличных условиях. Как правило, антикоррозионные краски для лучшего эффекта наносят достаточно толстым слоем.

Окрашенная поверхность выглядит эстетично. При этом она надежно защищена от коррозии. Образовавшаяся в результате окрашивания пленка предотвращает отрицательное влияние света, влаги, примесей в атмосфере. Защита поверхности от окисления обеспечивается на срок до 8 лет.

Факторы формирования защитной пленки

Оксидная пленка способна оказывать выраженное защитное воздействие на материал. Но для этого требуется, чтобы она соответствовала нескольким важным требованиям:

  • Сплошность. На поверхности пленка распределяется ровным слоем, без пор и участков, которые не затронуты ею.
  • Хорошее сцепление с поверхностью материала. Это требуется для удержания подобного защитного барьера на месте и исключения ухудшения его свойств.
  • Химическая инертность. Пленка будет защищать металл только в том случае, если она вступает в химические реакции с окружающей средой. В противном случае, есть большая опасность, что весь защитный эффект окажется сведен к нулю.

Так как материал будет использоваться на протяжении длительного времени и сложно предсказать, что станет воздействовать на него, большое значение имеет стойкость к износу и повышенный уровень твердости.

Не менее важен и тот факт, чтобы пленка не была пористой и рыхлой. Когда она плохо контактируется с поверхностью, риск протекания разрушающих процессов становится значительно выше.

При изучении различных свойств оксидных пленок, ученые особенно пристально рассматривают сплошность. Отмечается, что на нее влияет молекулярный объем. Его показатели должны быть выше атомного объема металла.

Сплошность не ставится на первое место при определении защитных свойств оксидной пленки только для небольшой группы металлов. В их числе щелочно-земельные и щелочные.

При проведении работ по защите от химической коррозии, большое внимание уделяется методу замера толщины. Анализ характеристик происходит на разных стадиях формирования. Большое значение имеют получаемые показатели скорости окисления металла и характер протекания подобного процесса.

Когда окислы оказываются сформированными, специалисты рекомендуют проверить, какую пленку они создали на поверхности, обладает ли она нужными защитными свойствами.

Нормы и правила СНиП

Защита металлических конструкций от разрушения на предприятиях — это технологический процесс, при котором необходимо соблюдать установленные нормы. Официальный документ, который регулирует нормы и правила при антикоррозионных работах — СНиП 2.03.11—85.

Данный документ указывает допустимые методы обработки металлических поверхностей для предотвращения коррозии. Они включают:

  • покрытие лакокрасочными материалами;
  • пропитку антикоррозионным составом;
  • оклейку специальными защитными пленками.

При выполнении защитных работ документ предписывает учитывать особенности среды: степень агрессивности, физическое состояние и характер действия. Для разных сред предусмотрено использование материалов, которым можно обеспечить эффективную защиту от разрушения.

Если обработка металлоконструкций от разрушения проводится самостоятельно, рекомендации и правила из СНиП необходимо учитывать.

На Череповецком заводе металлоконструкций все работы по предотвращению коррозии начиная от соответствующего проектирования и заканчивая послемонтажным обслуживанием, проводятся с учетом госстандартов и правил. Уверенность в высоком качестве металлоконструкций позволяет давать нашим клиентам гарантию до 24 месяцев на всю продукцию.

Заказывайте оцинковку металла в Точинвест Цинк

Каждый клиент при обращении в нашу компанию получает следующие преимущества:

  1. Компания работает с 2007 года, имеет в своем распоряжении 3 производственных цеха для горячего цинкования.
  2. Мощность предприятия с многолетним опытом составляет 120 000 тонн в год.
  3. Оперативное проведение работ, независимо от сложности и объема.
  4. Наше предприятие является обладателем самой глубокой ванны для горячего цинкования в ЦФО – глубина составляет 3.43 м.
  5. Наносим цинковое покрытие на различные виды металлоконструкций, включая габаритные.
  6. Нанесение покрытия по технологии горячего цинкования специалисты выполняют в соответствие с требованиями ГОСТ 307-89.

Работы проводятся на современном оборудовании чешской компании EKOMOR и немецко-австрийской компании KVK KOERNER.
Вернуться к статьям Поделиться статьей

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]