Пропан. Все аспекты применения в быту и производстве технического газа пропана


Таблица плотности газа

Таблица плотностей сжиженной пропан-бутановой смеси (в т/м³) в зависимости от ее состава и температуры

Соотношение Пропан/
Бутан T, °C
−25−20−15−10−50510152025
100/00,5590,5530,5480,5420,5350,5280,5210,5140,5070,4990,490
90/100,5650,5590,5540,5480,5420,5350,5280,5210,5140,5060,498
80/200,5710,5650,5610,5550,5480,5410,5350,5280,5210,5140,505
70/300,5770,5720,5670,5610,5550,5480,5420,5350,5290,5210,513
60/400,5830,5770,5720,5670,5610,5550,5490,5420,5360,5290,521
50/500,5890,5840,5790,5740,5680,5640,5560,5490,5430,5360,529
40/600,5950,5900,5860,5790,5750,5680,5620,5550,5500,5430,536
30/700,6010,5960,5920,5860,5810,5750,5690,5620,5570,5510,544
20/800,6070,6030,5980,5920,5880,5820,5760,5690,5650,5580,552
10/900,6130,6090,6050,5990,5940,5880,5830,5760,5720,5660,559
0/1000,6190,6150,6110,6050,6010,5950,5900,5830,5790,5730,567

Отличительные особенности сжиженных газов:

  • высокая упругость паров;
  • не имеют запаха. Для своевременного выявления утечек сжиженным газам придают специфический запах — производят одоризацию этилмер-каптаном (C2H5SH);
  • невысокие температуры и пределы воспламеняемости. Температура воспламенения бутана — 430°C, пропана — 504°C. Нижний предел воспламеняемости пропана — 2,3%, бутана — 1,9%;
  • пропан, бутан и их смеси тяжелее воздуха. В случае утечки сжиженный газ может скапливаться в колодцах или подвалах. Запрещается устанавливать оборудование, работающее на сжиженном газе, в помещениях подвального типа;
  • переход в жидкую фазу при увеличении давления или уменьшении температуры;
  • высокая теплотворная способность. Для сжигания СУГ необходимо большое количество воздуха (для сжигания 1 м³ газовой фазы пропана необходимо 24 м³ воздуха, а бутана — 31 м³ воздуха);
  • большой коэффициент объемного расширения жидкой фазы (коэффициент объемного расширения жидкой фазы пропана в 16 раз больше, чем у воды). Баллоны и резервуары заполняются не более чем на 85% геометрического объема. Заполнение более чем на 85% может привести к их разрыву, последующему быстрому истечению и испарению газа, а также воспламенению смеси с воздухом;
  • в результате испарения 1 кг жидкой фазы СУГ при н. у. получается 450 литров паровой фазы. Другими словами, 1 м³ паровой фазы пропан-бутановой смеси имеет массу 2,2 кг;
  • при сгорании 1 кг пропан-бутановой смеси выделяется около 11,5 кВт×ч тепловой энергии;
  • сжиженный газ интенсивно испаряется и, попадая на кожу человека, вызывает обморожение.

Пример:

Плотность пропан-бутановой смеси состава 60% пропан, 40% бутан при температуре окружающей среды -20°C составит 0,577 т/м3 либо 577 кг/м3

Свойства СУГ

Чтобы понять, зачем смешивают пропан с бутаном, необходимо знать особенности каждого компонента, в том числе их взаимодействие с внешней средой. С точки зрения молекулярного строения они относятся к углеводородным соединениям, которые можно хранить в жидком состоянии, что значительно упрощает транспортировку и эксплуатацию.

Одним из условий образования жидкого газа является высокое давление, поэтому его хранят в специальных резервуарах под давлением 16 бар. Второе условие для перехода углеводородных газов из одного состояния в другое – внешняя температура воздуха. Пропан закипает при -43°С, тогда как преобразование из жидкого в газообразное состояние у бутана происходит при -0,5°С, что является основным отличием данных углеводородов.

Таблица с некоторыми другими свойствами данных газов

Дополнительную информацию о свойствах сжиженного углеводородного газа можно прочитать в статье: пропан-бутан для газгольдера – свойства и особенности применения.

I. Видеоурок: “Алканы”

II. Гомологический ряд алканов

Алканы (предельные углеводороды) – это алифатические (ациклические), насыщенные углеводороды, в которых все валентности атомов углерода, не затраченные на образование простых С – С связей, насыщены атомами водорода.

Общая формула алкановСnH2n+2

В таблице представлены некоторые представители ряда алканов и их радикалы.

Формула Название Название радикала
CH4 метан — CH3 метил
C2H6 этан — C2H5 этил
C3H8 пропан — C3H7 пропил
C4H10 бутан — C4H9 бутил
C4H10 изобутан изобутил
C5H12 пентан пентил
C5H12 изопентан изопентил
C5H12 неопентан неопентил
C6H14 гексан гексил
C7H16 гептан гептил
C10H22 декан децил

Из таблицы видно, что эти углеводороды отличаются друг от друга количеством групп — СН2 -.Такой ряд сходных по строению, обладающих близкими химическими свойствами и отличающихся друг от друга числом данных групп называется гомологическим рядом. А вещества, составляющие его называются гомологами.

Гомологи – вещества сходные по строению и свойствам, но отличающиеся по составу на одну или несколько гомологических разностей (- СН2 -).

Тренажёр: «Гомологический ряд алканов»

III. Строение алканов

Основные характеристики:

  • пространственное строение – тетраэдрическое
  • sp3 – гибридизация,
  • ‹ HCH = 109 ° 28
  • Углеродная цепь — зигзаг (если n ≥ 3)
  • σ – связи (свободное вращение вокруг связей)
  • длина (-С-С-) 0,154 нм
  • энергия связи (-С-С-) 348 кДж/моль

Все атомы углерода в молекулах алканов находятся в состоянии sр3-гибридизации

Угол между связями С-C составляет 109°28′, поэтому молекулы нормальных алканов с большим числом атомов углерода имеют зигзагообразное строение (зигзаг). Длина связи С-С в предельных углеводородах равна 0,154 нм (1нм=1*10-9м).

Анимация: “Образование молекулы метана”

а) электронная и структурная формулы

б) пространственное строение

Строение молекулы этана С2Н6


Строение молекулы пропана С3Н8 – цепь зигзагообразная

Тренажёр: «Состав и строение алканов»

IV. Изомерия алканов

Характерна СТРУКТУРНАЯ изомерия цепи с С4

Один из этих изомеров (н-бутан) содержит неразветвленную углеродную цепь, а другой — изобутан — разветвленную (изостроение).

Атомы углерода в разветвленной цепи различаются типом соединения с другими углеродными атомами. Так, атом углерода, связанный только с одном другим углеродным атомом, называется первичным, с двумя другими атомами углерода – вторичным, с тремя – третичным, с четырьмя – четвертичным.

С увеличением числа атомов углерода в составе молекул увеличиваются возможности для разветвления цепи, т.е. количество изомеров растет с ростом числа углеродных атомов.

Сравнительная характеристика гомологов и изомеров

V. Номенклатура алканов

Свою номенклатуру имеют радикалы (углеводородные радикалы)

Алкан

— ан

СnH2n+2

Радикал (R)

— ил

СnH2n+1

ФОРМУЛА НАЗВАНИЕ ФОРМУЛА НАЗВАНИЕ
метан метил
этан этил
пропан пропил
изопропил

(втор-пропил)

бутан н — бутил
втор-бутил
изобутан

(2 – метилпропан)

изобутил

(перв-изобутил)

трет-бутил
неопентан

(2,2-диметилпропан)

нео-пентил

Число одинаковых заместителей указывают при помощи множительных приставок:

  • два – «ди»
  • три – «три»
  • четыре – «тетра»
  • пять – «пента»
  • шесть – «гекса»
  • семь – «гепта»
  • восемь – «окта»
  • девять – «нано»

Для названия предельных углеводородов применяют в основном систематическую (международная номенклатура IUPAC) и рациональную номенклатуры.

Номенклатура алканов

1. Рациональная номенклатура

По рациональной номенклатуре алканы рассматривают как производные простейшего углеводорода — метана, в молекуле которого один или несколько водородных атомов замещены на радикалы. Эти заместители (радикалы) называют по старшинству (от менее сложных к более сложным). Если эти заместители одинаковые, то указывают их количество. В основу названия включают слово «метан»:

2. Систематическая номенклатура

Правила систематической номенклатуры:

1. В формуле молекулы алкана выбираем главную цепь — самую длинную.

2. Затем эту цепь нумеруем с того конца, к которому ближе расположен заместитель (радикал). (Если заместителей несколько, то поступают так, чтобы цифры, указывающие их положение, были наименьшими) Заместители перечисляем по алфавиту.

3. Называем углеводород: вначале указываем (цифрой) место расположения заместителя, затем называем этот заместитель (радикал), а в конце добавляем название главной (самой длинной) цепи.

Таким образом, углеводород может быть назван: 2 — метил — 4 — этилгептан (но не 6-метил-4-этилгептан).

Анимация: “Образование названий алканов по номенклатуре ИЮПАК”

Анимация: “Примеры разной записи формул одного и того же вещества”

Тренажер №1: “Первичные, вторичные и третичные атомы углерода”

Тренажер №2: “Составление формул алканов по названию”

ЦОРы

Видеоурок:“Алканы”

Анимация: “Образование молекулы метана”

Анимация: “Образование названий алканов по номенклатуре ИЮПАК”

Анимация: “Примеры разной записи формул одного и того же вещества”

Пропан в промышленности

Техническая форма вещества используется:

  • для обогрева кабин большегрузных машин;
  • в сварке и раскрое различных металлических конструкций;
  • в парфюмерии, косметическом производстве;
  • для изготовления лаков, растворителей;
  • в производстве печатной продукции на полиграфических комбинатах — с его помощью делают копировальную бумагу и типографскую краску;
  • как вкусоароматическая добавка;
  • для производства хладагента для холодильных установок и кондиционеров;
  • в изготовлении и окрашивании полимеров;
  • для обогрева цехов, теплиц, производственных зданий.

Технологический фактор

Помимо климатического фактора, существует технологическое обоснование того, зачем смешивают пропан и бутан. На нефтеперерабатывающих предприятиях в процессе переработки попутных газов пропан и бутан производятся в разных количествах. Поэтому для оптимизации сырьевой политики данные углеводороды смешивают между собой в определенной пропорции. При этом, независимо от технологии изготовления сжиженного углеводородного газа, процентное содержание двух составляющих должно находиться в рамках, установленных ГОСТом.

Зачем смешивают пропан и бутан в автономной системе газоснабжения

Учитывая физико-химические характеристики насыщенных углеводородов, их применение во многом зависит от климатических условий. Сжиженный бутан в чистом виде не будет работать при отрицательных температурах. Тогда как применение чистого пропана противопоказано в условиях жаркого климата, поскольку высокая температура вызывает чрезмерное повышение давления в газовом резервуаре.

Так как для каждого региона нецелесообразно производить отдельную марку газа, с целью унификации ГОСТом предусмотрена смесь с определенным содержанием двух компонентов в рамках установленных норм. Согласно ГОСТ 20448-90 максимальное содержание бутана в данной смеси не должно превышать 60%, при этом для северных регионов и в зимнее время года доля пропана должно быть не меньше 75%.


Процентное соотношение газов в разное время года

Кстати, больше статей нашего блога о газификации — в этом разделе.

Хлорирование пропана – промышленный метод получения перхлорэтилена

Термическое хлорирование пропана (250-350 °С) приводит к трудноразделяемой смеси моно-и дихлорпропанов, при повышении температуры до 400-500 °С образуются хлорпропены; исчерпывающее хлорирование в избытке хлора при 550-600 °С — один из промышленных методов получения перхлорэтилена и СС14.

Термическое хлорирование пропана в промышленности проводится главным образом с целью производства 1,3-дихлорпропана, на основе которого получается циклопропан. Механизм хлорирования пропана включает следующие стадии: пропан и хлор нагревают раздельно в жидком виде до 400—600°, после чего в поток пропана с большой скоростью вводится хлор с таким расчетом, чтобы скорость его ввода была выше скорости распространения пламени. Реакция проводится в трубчатом змеевике. Так же как и при хлорировании метана, применяется ступенчатая подача хлора с таким расчетом, чтобы на отрезке реакционной трубы между предыдущей и последующей подачей хлора реакция успевала полностью завершиться. Съем избыточного тепла реакции достигается введением с пропаном инертного разбавителя, например, азота или двуокиси углерода. На некоторых установках реакционный змеевик с этой целью помещают в баню с расплавленными солями. Продукты реакции охлаждаются в змеевиковом холодильнике, после чего поступают в ректификационную колонну на разделение. Выделяемые углеводороды вновь направляются на реакцию, а хлорированные углеводороды подвергаются повторной ректификации для разделения на моно-, ди- и полихлориды. Разгонка осуществляется на нескольких колоннах.

Транспортирование и хранение

Так как испарение жидкости в СУГ происходит даже при 0 °С, эти назы принято хранить строга в закрытых ёмкостях.

Крупные потребители получают углеводородные газы в железнодорожных или автомобильных цистернах, из которых их переливают в заводские стационарные емкости.

Мелкие потребители пользуются обычно баллонами.

Транспортируют газы в соответствии с правилами перевозок опасных грузов и правилами безопасной эксплуатации сосудов, работающих под давлением.

В первую очередь, стоит учитывать свойства пропана. Его температура в баллоне не должна превышать 15 градусов по Цельсию, иначе существует риск возгорания.

Где применяют пропан?

Благодаря высокой температуре горения, пропан широко применяется в качестве топлива для автомобилей, как топливный элемент для газовых плит и отопительных систем. На предприятиях используется в процессе резки металла и сварки металлоконструкций. В пищевой и химической промышленности он применим в качестве растворителя или пищевой добавки.

Пропан-бутановая смесь

Чем алканы отличаются от других химических соединений

«Парафины» – это химические соединения, которые имеют низкую реакционную способность. Алканы не растворяются в воде и не имеют какого-либо цвета. При горении алканы выделяют очень много тепла, а пламя их – бесцветное или светло-голубое. Этот класс соединений активно применяют в промышленности, в частности – при синтезировании топлива и нефти.


В таблице вы можете увидеть список веществ, которые относятся к классу алканов.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]