Классификация
Классификация припоев происходит по нескольким основным признакам. В первую очередь они делятся на мягкие и твердые. К мягким относятся те марки к которых температура плавления достигает 300 градусов Цельсия. Максимальный предел прочности на растяжения в таком случае составляет 100 Мпа, тогда как минимальный только 16 МПа. К ним причисляются сплавы из свинца, олова, кадмия цинка, сурьмы и прочих легкоплавных металлов, в том числе и бессвинцовые припои.
https://youtube.com/watch?v=cyCXjjhN6xc
К твердым относятся те марки, у которых температура плавления выше 300 градусов Цельсия. Это повышает и предел прочности на растяжение, так как минимальное значение тут составляет около 100 МПа, а максимальное значение может достигать 500 Мпа. Это сплавы меди, цинка, никеля, серебра и прочих металлов, у которых высокая температура плавления.
Твердый припой для пайки
Помимо этого есть разделение на то, какой именно основной металл содержится в составе присадочного материала. Это может быть:
- Серебряный припой;
- Медный;
- Оловянный;
- Алюминиевый;
- Припой для пайки нержавеющей стали.
Также стоит выделить в отдельный класс флюсованные марки, внутри которых содержится флюс, соответственно, им не требуется его дополнительное применение.
По вариантам поставки выделяются:
- Стержни – небольшие плотные элементы, которые расплавляются паяльником;
- Проволока – хорошо подходит как для газовой пайки, так и для паяльника;
- Трубчатые – выполняется в виде трубки, внутри которой зачастую располагается флюс;
- Листы – тонкие листы сплава, которые подходят как для пайки плоских поверхностей, так и для других целей.
Существуют различные технологии производства, которые также создают разные марки припоев для пайки. Среди них выделяются тянутые, измельченные, литые, прессованные, спеченные, штампованные, аморфные и катанные.
Без содержания свинца
Бессвинцовый припой не должен содержать вредного металла и считается экологически чистым, не причиняющим вреда окружающей среде и исполнителям работ по пайке. Простейшим примером служит припой оловянный, который содержит чистое олово, имеет повышенную смачиваемость и высокую электропроводность. Для борьбы с недостатками, в них добавляют медь, серебро и золото, что помогает сделать субстанцию более твёрдой.
У такого изделия повышается температура расплавления, но найти полную альтернативу стандартным видам припоя пока что не удаётся, но основным показателем является безвредность. Олово занимает главное место в химическом составе, поэтому присущие ему свойства оказывают большое влияние на припой, из-за этого температура плавления у бессвинцового припоя ниже, а материал получается более мягким.
В. И. Блинов, образование ПТУ, специальность сварщик шестого разряда, допуск от НАКС к НГДО и ГО, опыт работы с 2004 года: «При отсутствии подходящего по всем параметрам варианта, во время пайки используйте марку ПСР-45, в которой содержание вредного свинца минимальное и составляет не более 0,5% от общего веса».
Форма выпуска
Припой выпускается в различных формах. Первоначально, на заводе, это чушки. В обозначении марки тогда добавляется буква Ч. Например Ч ПОС-40. ГОСТ 21930-76 определяет форму и размер чушек для каждого материала и вида.
В розничную продажу припой для пайки поступает в прутках диаметром 8 мм, в виде паяльной проволоки, намотанной на катушке или свернутой в спираль и уложенной в пластиковой тубе.
Очень часто паяльная проволока представляет собой трубку из оловянно-свинцового сплава, внутри которой находится флюс – вещество, способствующее повышению качества пайки.
Флюс разрушает оксидную пленку на спаиваемых деталях и препятствует дальнейшему окислению спаянного стыка во время его охлаждения.
Нередко в качестве флюса используется канифоль – продукт перегонки сосновой смолы-живицы. Она плавится при температуре 68 ℃, в обычных условиях твердая, хрупкая, имеет жёлтый цвет.
3.3. Классификация флюсов и система их обозначений
Паяльные флюсы
— вещества и соединения, применяемые для предотвращения образования оксидной пленки на поверхности припоя и паяемого материала, а также удаления продуктов окисления из зоны пайки. Температура плавления флюсов ниже, чем температура плавления припоя. Флюсы применяют в твердом, пастообразном и порошкообразном состоянии, а также в виде водных, спиртовых или глицериновых растворов.
Флюсы
, применяемые при пайке, классифицируются по: температурному интервалу активности; природе растворителя; природе активатора определяющего действия; механизму действия; агрегатному состоянию. В зависимости
от температурного интервала активности
паяльные флюсы подразделяются на: низкотемпературные (≤ 450 °С); высокотемпературные (> 450 °С).
По природе растворителя
паяльные флюсы подразделяются на: водные; неводные.
По природе активаторов
определяющего действия
низкотемпературные паяльные флюсы
подразделяются на: канифольные; кислотные; галогенидные; гидразиновые; фторборатные; анилиновые; стеариновые.
По природе активаторов определяющего действия высокотемпературные паяльные флюсы
подразделяются на: галогенидные; фторборатные; боридно-углекислые.
Если флюс содержит несколько активаторов, необходимо называть все активаторы. Например, канифольно-галогенидный, фторборатногалогенидный флюс.
По механизму действия
паяльные флюсы подразделяются на: защитные; химического действия; электрохимического действия; реактивные.
По агрегатному состоянию
паяльные флюсы подразделяют на: твердые; жидкие; пастообразные.
Печатные платы и компоненты. Чистота поверхности печатных плат и компонентов
является одним из важнейших факторов, влияющих на процесс пайки. Оксиды и другие поверхностные загрязнения существенно ухудшают смачиваемость припоем и передачу тепла от жала паяльника к паяемым поверхностям, увеличивая время пайки. Печатные платы с длительным сроком хранения для улучшения паяемости могут быть подвергнуты предварительной очистке с помощью специальных растворителей, например, VIGON SC 200, ZESTRON SD 100, ZESTRON SD 301.
Рекомендуемая последовательность работы
При работе с многоканальными трубчатыми припоями пайка осуществляется с двух рук. Для того чтобы при пайке получить наилучшие результаты, рекомендуется использовать следующий процесс:
1. Поднесите жало паяльника к рабочей поверхности. Жало паяльника должно контактировать одновременно с контактной площадкой платы и выводом компонента, для того чтобы прогреть обе паяемые поверхности. Избыток припоя на жале, нанесенного во время лужения, будет помогать процессу теплопередачи путем увеличения площади контакта между контактной площадкой и выводом. Необходимо не более доли секунды, чтобы прогреть соответствующим образом обе поверхности.
2. Поднесенный в это время к месту соединения с противоположной от жала паяльника стороны пруток трубчатого припоя позволит образовать галтель припоя. Для этого необходимо около 0,5 секунды
Внимание! Если припой подавать непосредственно на жало паяльника, активные компоненты флюса будут преждевременно выгорать, а его эффективность резко уменьшается. Не подавайте избыточное количество припоя на паяное соединение
Это может привести к увеличению количества остатков флюса и ухудшению внешнего вида изделия. Рекомендуется выбирать диаметр прутка припоя, равный половине диаметра жала паяльника.
3. Удалите припой от паяемого соединения и затем удалите жало паяльника.
Весь процесс пайки должен занимать от 0,5 до 2,0 с на одно паяное соединение в зависимости от массы, температуры и конфигурации жала паяльника, а также паяемости поверхностей. Избыточное время или температура могут, во-первых, истощать флюс до смачивания припоя, что может привести к увеличению количества остатков, во-вторых, увеличивают хрупкость паяного соединения. Завершение работы
Для обеспечения длительного срока службы жала паяльника после окончания работы необходимо его облудить. Для этой цели удобно использовать трубчатый припой: оберните несколько витков припоя (как показано на рис. 5) вокруг кончика жала и нагрейте его.
Практические примеры
На первоначальном этапе работа с трубчатыми припоями (пайка с двух рук) может вызывать сложности. Как правильно работать с трубчатыми припоями? Нижеприведенные примеры помогут быстро освоить технологию пайки с двух рук.
Рис.4
Рис.5
Пайка чип-компонентов: резисторы, конденсаторы, танталовые конденсаторы, индуктивности, варисторы, MELF-Kopnyca.
1. Облудить одну из контактных площадок (далее КП). Необходимо подать достаточное количество припоя для последующего формирования галтели.
2. Установить чип-компонент на КП.
3. Придерживая чип-компонент пинцетом, поднести жало паяльника, обеспечивая одновременный контакт жала с выводом чип-компонента и облуженной КП.
4. Произвести пайку в течение 0,5-1,5 с. Отвести жало паяльника.
5. Произвести пайку второго вывода: поднести жало паяльника, обеспечивая одновременный контакт жала с выводом и КП. С противоположной стороны от жала паяльника подать трубчатый припой под углом 45° к плоскости КП и вывода компонента
Внимание! При пайке чип-компонентов важен правильный подбор диаметра припоя. Чрезмерно толстый припой будет приво-
дить к формированию избыточной галтели припоя.
Содержащие сурьму
Для уменьшения степени окисления сплава в жидком состоянии и придания пайке лучшего вида, в состав его вводят сурьму. Согласно ГОСТ 21930-76 все оловянно-свинцовые припои для пайки в зависимости от химического состава классифицируются на:
- безсурьмянистые;
- малосурьмянистые, с содержанием сурьмы до 0,5 %;
- сурьмянистые, содержащие более 0,5% сурьмы.
Этот же ГОСТ определяет и области преимущественного использования каждой марки.
Таблица 1. Химический состав припоев
Химический состав, % | ||||||
Марка припоя | Код ОКП | Основные компоненты | ||||
Олово | Сурьма | Кадмий | Медь | Свинец | ||
Бессурьмянистые | ||||||
ПОС 90 | 17 2311 1100 04 | 89-91 | — | — | — | Остальное то же |
ПОС 63 | 17 2312 0100 | 62,5-63,5 | — | — | — | « |
ПОС 61 | 17 2312 1100 10 | 59-61 | — | — | — | « |
ПОС 40 | 17 2314 1100 00 | 39-41 | — | — | — | « |
ПОС30 | 17 2321 1100 09 | 29-31 | — | — | — | « |
ПОС 10 | 17 2326 1100 06 | 9-10 | — | — | — | « |
ПОС 61М | 17 2312 1200 07 | 59-61 | — | — | 1,2-2,0 | « |
ПОСК 50-18 | 17 2313 1200 02 | 49-51 | — | 17-19 | — | « |
ПОСК 2-18 | 17 2343 1100 09 | 1,8-2,3 | — | 17,5-18,5 | — | « |
Малосурьмянистые | ||||||
ПОССу 61-0,5 | 17 2312 1400 01 | 59-61 | — | — | — | Остальное то же |
ПОССу 50-0,5 | 17 2313 1100 05 | 49-51 | — | — | — | « |
ПОССу 40-0,5 | 17 2314 1200 08 | 39-41 | — | — | — | « |
ПОССу 35-0,5 | 17 2315 1200 03 | 34-36 | 0,05-0,5 | — | — | « |
ПОССу 30-0,5 | 17 2321 1200 06 | 29-31 | — | — | — | « |
ПОССу 25-0,5 | 17 2322 1200 01 | 24-26 | — | — | — | « |
ПОССу 18-0,5 | 17 2323 1100 10 | 17-18 | — | — | — | « |
Сурьмянистые | ||||||
ПОСу 95-5 | 17 2311 1200 01 | Ост. | 4,0-5,0 | — | — | — |
ПОССу 40-2 | 17 2314 1300 05 | 39-41 | 1,5-2,0 | — | — | Остально то же |
ПОССу 35-2 | 17 2315 1300 00 | 34-36 | 1,5-2,0 | — | — | « |
ОССу 30-2 | 17 2321 1300 03 | 29-31 | 1,5-2,0 | — | — | « |
ПОССу 25-2 | 17 2322 1300 09 | 24-26 | 1,5-2,0 | — | — | « |
ПОССу 18-2 | 17 2323 1200 07 | 17-18 | 1,5-2,0 | — | — | « |
ПОССу 15-2 | 17 2324 1100 05 | 14-15 | 1,5-2,0 | — | — | « |
ПОССу 10-2 | 17 2326 1200 03 | 9-10 | 1,5-2,0 | — | — | « |
ПОССу 8-3 | 17 2326 1300 00 | 7-8 | 2,0-3,0 | — | — | « |
ПОССу 5-1 | 17 2327 1100 01 | 4-5 | 0,5-0,1 | — | — | « |
ПОССу 4-6 | 17 2327 1200 09 | 3-4 | 5,0-6,0 | — | — | « |
ПОССу 4-4 | 17 2327 1300 06 | 3-4 | 3,0-4,0 | — | — | « |
Основные свойства
В качестве материалов для пайки используются разнообразные металлические сплавы. Однако существуют составы, полностью состоящие из металла. Чтобы соединения были качественными, припой должен обладать некоторыми свойствами.
Советуем изучить — Требования к электроприводам лифтов
Любые материалы должны обладать высокими показателями смачиваемости — явление, при котором прочность связи между твердыми и жидкими веществами выше, чем у жидкости. При высоких значениях жидкость распространяется по поверхности, заполняя мельчайшие полости. В случае если припой недостаточно смачивает металл, его нельзя использовать для пайки. Например, свинец не применяется для работы с медью, иначе получится низкокачественное соединение.
Существуют два предела температуры. Первый — тот, при котором в процессе пайки начнут плавиться самые легкоплавкие элементы, второй — когда весь припой станет жидким. Промежуток между этими показателями по-научному называется интервалом кристаллизации.
Если место коммутации находится в таком температурном диапазоне, пайка может быстро разрушиться даже от минимальной нагрузки. Это обусловлено тем, что соединение имеет высокое сопротивление и хрупкость. Следует отметить: пока припой полностью не застыл, нельзя оказывать на него никакого воздействия.
Тугоплавкие и легкоплавкие
Припои для пайки подразделяются на тугоплавкие и легкоплавкие. Еще их называют твердые и мягкие. Все виды припоев широко используются в машиностроении, электротехнике, электронике.
Твердые припои применяют, когда необходимо достичь большой прочности соединения. Наверно, такие соединения можно было бы назвать конструктивными. Температура плавления их достигает 500 ℃ и выше.
Такая температура опасна для большинства компонентов электронных схем, особенно для полупроводниковых приборов и ограничивает их применение, поэтому для пайки используют другие сплавы – легкоплавкие.
Их получают добавлением в олово большего количества свинца. Все легкоплавкие припои имеют температуру плавления около 200 – 240 ℃.
Пайка компонентов, монтируемых в отверстия.
1. Установить компонент в монтажные отверстия, если необходимо, то загнуть выводы.
2. Поднести жало паяльника таким образом, чтобы был обеспечен одновременный контакт с КП монтажного отверстия и выводом компонента, прогреть 0,5-1,0 с.
Пробило № 1.
Необходимо обеспечить хороший тепловой контакт между жалом паяльника и паяемыми поверхностями.
3. Подать небольшое количество припоя на жало паяльника, так чтобы образовался мостик припоя между КП и выводом (см. рис.).
4. Перемещайте трубчатый припой по кругу вдоль КП в противоположном направлении от жала паяльника (см. рис.).
5. Как только паяное соединение сформировано, отвести пруток припоя.
6. Одновременно отвести жало паяльника. Для образования правильной формы галтели жало паяльника должно двигаться вверх вдоль вывода компонента.
Правило № 2.
Необходимо обеспечивать контакт между жалом паяльника и паяемыми поверхностями до тех пор, пока не произойдет формирование галтели припоя.
Внимание! Избегайте сильного давления жалом паяльника на КП. Не допускайте контакта жала паяльника с галтелью припоя без использования трубчатого припоя, это может привести к деградации паяного соединения
Возможные проблемы и методы решения
Разбрызгивание.
Высокая скорость нагрева. Подавайте пруток припоя на разогретые контактные поверхности (вывод компонента и КП), не подавайте припой на жало паяльника.
Матовые паяные соединения.
Длительный контакт жала паяльника с паяным соединением после отвода прутка припоя из зоны пайки.
Остатки после пайки в виде нагара.
Произвести очистку жала паяльника и губки или заменить жало паяльника.
Избыточные остатки флюса вокруг паяного соединения.
1. Большой диаметр трубчатого припоя, использовать припой меньшего диаметра.
2. Избыточная подача трубчатого припоя в место пайки.
3. Низкая температура пайки, использовать паяльник большей мощности или увеличить температуру пайки.
Иностранные марки
Существуют и составы иностранного производства. Маркируются они по-разному, но в марке можно определить состав сплава. В качестве примера можно привести сплав Sb62Pb36Ag2, производимый американской .
В его составе 62% олова, 36% свинца и 2% серебра. Серебро в состав очень часто добавляют, чтобы увеличить текучесть после того, как припой расплавился.
Еще одним примером можно назвать продукт, производимый канадской . Маркировка его SN62/36/2 NC. Это материал в виде пасты и из маркировки следует, что состав его: 62% олова, 36% свинца, 2% серебра. NC (No Clean – безотмывочный) означает, что шарики припоя находятся внутри геля из флюса.
Способы нагревания
Паяльные материалы можно нагревать разными способами. Если говорить о домашнем применении процесса пайки металлов, то самый распространенный вариант – паяльник или горелка.
Первый инструмент используется, если необходимо провести низкотемпературный процесс, второй – если высокотемпературный. Разнообразие современных паяльников велико. Среди них есть устройства с автоматической регулировкой температуры и другими полезными функциями.
В производстве используются в основном другие технологии: печная пайка, с помощью индукционных нагревателей, с погружением в специальные ванны с металлом или солями.
Применяется нагрев электросопротивлением, когда припой и соединяемые заготовки нагреваются за счет протекания по ним электрического тока, и прочие.
3.2. Свойства припоев
Твердая пайка
осуществляется электроконтактным способом, графитовыми или медными электродами либо с помощью дуговой сварки. Мелкие детали паяют с помощью автогена. При электроконтактном способе припой укладывается заранее между соединяемыми деталями или вносится в соединение в процессе пайки, сварка осуществляется без присадки металла путем сплавления концов соединяемых деталей.
Для электроконтактной пайки серебряными припоями
в качестве флюса обычно служит бура. Пайка самофлюсующимися припоями, в состав которых входит фосфор, и сварка в защитной атмосфере осуществляются без применения флюса.
Припои с содержанием фосфора для пайки сталей и чугуна и соединений, подвергающихся ударам и вибрациям, из-за хрупкости паяного шва применять нельзя. Классификация и химический состав мягких и полутвердых припоев приведены в табл. 3.1.
Таблица 3.1
Классификация и химический состав мягких и полутвердых припоев
Припой | Химический состав, % | |||||||
Вид | Марка | Олово | Сурьма | Кадмий | Медь | Свинец | Серебро | Индий |
Олово | О2 | 99,9 | – | – | – | – | – | – |
Бессурьмянистые | ПОС61 | 60–62 | – | – | – | Остальное | – | – |
ПОС40 | 39–41 | – | – | – | – | – | ||
ПОС10 | 9–10 | – | – | – | – | – | ||
ПОС61М | 60–62 | – | – | 1,5–2,0 | – | – | ||
ПОСК50-18 | 49–51 | – | 17–19 | – | – | – | ||
Малосурьмянистые | ПОССу61-0,5 | 60–62 | 0,2–0,5 | – | – | Остальное | – | – |
ПОССу40-0,5 | 39–41 | – | – | – | – | |||
ПОССу30-0,5 | 29–31 | – | – | – | – | |||
ПОССу18-0,5 | 17–18 | – | – | – | – | |||
Сурьмянистые | ПОССу95-5 | 94–96 | 4–5 | – | – | Остальное | – | – |
Серебряные | ПСрО10-90 | Остальное | – | – | – | – | 10±0,5 | – |
ПСрОСу8 (ВПр-6) | – | – | – | – | – | 8±0,5 | – | |
ПСрМО5 (ВПр-9) | – | – | – | 2±0,5 | – | 5±0,5 | – | |
ПСрОС3,5-95 | – | – | – | – | 3,5±0,4 | – | ||
ПСрОС3-58 | 57,8±1,0 | – | – | – | – | 3±0,4 | – | |
ПСр3 | – | 3±0,3 | – | |||||
ПСр3Кд | – | – | 95–97 | – | – | 3,0–4,0 | – | |
ПСрО3-97 | Остальное | – | – | – | – | 3±0,3 | – | |
ПСр2,5 | 5,0–6,0 | – | – | – | 91–93 | 2,2–2,7 | – | |
ПСр2,5С | – | – | – | – | – | 2,5±0,2 | – | |
ПСр2 | 30±1 | 2±0,2 | – | |||||
ПСрОС2-58 | 58,8±1,0 | – | – | – | – | 2±0,3 | – | |
ПСр1,5 | 15±1 | – | – | – | – | 1,5±0,3 | – | |
ПСр1 | 35±1 | – | – | – | – | 1±0,2 | – | |
Индиевые | ПОСИ30 | 42 | – | – | – | 28 | – | 3 |
ПСр3И | – | – | – | – | – | 3 | 97 |
Физико-механические свойства мягких и полутвердых припоев приведены в табл. 3.2.
Таблица 3.2
Физико-механические свойства мягких и полутвердых припоев
Марка припоя | температура плавления, °с | ориентировочная температура пайки, °с | плотность, кг/м³ | удельное электрическое сопротивление, мком·м | предел механической прочности при растяжении, Мпа | |
солидус | ликвидус | |||||
О2 | 232 | 232 | 280 | 7310 | – | 25 |
ПОС61 | 183 | 190 | 240 | 8500 | 0,139 | 43 |
ПОС40 | 183 | 238 | 290 | 9300 | 0,159 | 38 |
ПОС10 | 268 | 299 | 350 | 10800 | 0,200 | 32 |
ПОС61М | 268 | 192 | 240 | 8500 | 0,143 | 45 |
ПОСК50-18 | 142 | 145 | 185 | 8800 | 0,133 | 40 |
ПОССу61-0,5 | 183 | 189 | 240 | 8500 | 0,140 | 45 |
ПОССу50-0,5 | 183 | 216 | – | 8900 | 0,149 | – |
ПОССу40-0,5 | 183 | 235 | 285 | 9300 | 0,169 | 40 |
ПОССу35-0,5 | 183 | 245 | – | 9500 | 0,172 | – |
ПОССу30-0,5 | 183 | 265 | 306 | 9700 | 0,179 | 36 |
ПОССу25-0,5 | 183 | 266 | – | 10000 | 0,182 | – |
ПОССу18-0,5 | 183 | 277 | 325 | 10200 | 0,198 | 36 |
ПОССу95-5 | 234 | 240 | 290 | 7300 | 0,145 | 40 |
ПОССу40-2 | 185 | 229 | – | 9200 | 0,172 | – |
ПОССу33-2 | 185 | 243 | – | 9400 | 0,179 | – |
ПОССу30-2 | 185 | 250 | – | 9600 | 0,182 | – |
ПОССу25-2 | 185 | 260 | – | 9800 | 0,183 | – |
ПОССу18-2 | 188 | 270 | – | 10100 | 0,206 | – |
ПОССу15-2 | 184 | 275 | – | 10300 | 0,208 | – |
ПОССу10-2 | 268 | 285 | – | 10700 | 0,208 | – |
ПОССу8-3 | 240 | 290 | – | 10500 | 0,207 | – |
ПОССу5-1 | 275 | 308 | – | 11200 | 0,200 | – |
ПОССу4-6 | 244 | 270 | – | 10700 | 0,208 | – |
ПСрО10-90 | – | 280 | – | 7600 | 12,9 | – |
ПСрОСу8 (ВПр-6) | – | 250 | – | 7400 | 19,7 | – |
ПСрМО5 (ВПр-9) | – | 240 | – | 7400 | 16,3 | – |
ПСрОС3,5-95 | – | 224 | – | 7400 | 12,3 | – |
ПСрОС3-58 | – | 190 | – | 8600 | 14,5 | – |
ПСр3 | – | 315 | – | 11400 | 20,4 | – |
ПСр3Кд | 300 | 325 | 360 | 8700 | 8,0 | 54 |
ПСр2,5 | 295 | 305 | 355 | 11000 | 21,4 | – |
ПСр2,5С | – | 306 | – | 11300 | 20,7 | – |
ПСр2 | – | 238 | – | 9500 | 16,7 | – |
ПСрОС2-58 | – | 183 | – | 8500 | 14,1 | – |
ПСр1,5 | – | 280 | – | 10400 | 19,1 | – |
ПСр1 | – | 235 | – | 9400 | 26,0 | – |
ПОСИ30 | 117 | 200 | 250 | 8420 | – | – |
ПСр3И | 141 | 141 | 190 | 7360 | – | – |
Советуем изучить — Как устроена и работает электрическая изгородь (электрическое оргаждение)
Преимущественные области применения мягких и полутвердых припоев:
О2
— лужение и пайка коллекторов, якорных секций и обмоток электрических машин с изоляцией класса H, лужение ответственных неподвижных контактов, в том числе содержащих цинк;
ПОС90
— лужение и пайка внутренних швов пищевой посуды и медицинской аппаратуры;
ПОС61
— лужение и пайка электрои радиоаппаратуры, печатных плат, точных приборов с высокогерметичными швами, где недопустим перегрев;
ПОС40
— лужение и пайка электроаппаратуры, деталей из оцинкованного железа с герметичными швами;
ПОС10
— лужение и пайка контактных поверхностей электрических аппаратов, приборов, реле;
ПОСК50-18
— пайка деталей из меди и ее сплавов, чувствительных к перегреву, в том числе пайка алюминия, плакированного медью. Пайка керамики, стекла и пластиков, металлизированных оловом, серебром, никелем;
ПОС61М
— пайка пищевой посуды, медицинской аппаратуры, электрои радиоаппаратуры, печатных плат, деталей, чувствительных к перегреву;
ПОССу61-0,5
— лужение и пайка электроаппаратуры, пайка печатных плат, обмоток электрических машин, оцинкованных радиодеталей при жестких требованиях к температуре;
ПОССу50-0,5
— лужение и пайка авиационных радиаторов;
ПОССу40-0,5
— лужение и пайка жести, обмоток электрических машин, для пайки монтажных элементов моточных и кабельных изделий;
ПОССу35-0,5
— лужение и пайка свинцовых кабельных оболочек;
ПОССу30-0,5
–лужение и пайка листового цинка, углеродистых и нержавеющих сталей. Лужение и пайка проводов, кабелей, бандажей, радиаторов, различных деталей аппаратуры и приборов, работающих при температуре до 160 °С;
ПОССу25-0,5
— лужение и пайка радиаторов;
ПОССу18-0,5
— лужение и пайка трубок теплообменников, электроламп;
ПОССу95-5
;
ПСр3Кд
— горячее лужение и пайка коллекторов, якорных секций, бандажей и токоведущих соединений электрических машин нагревостойкого исполнения и с повышенными частотами вращения. Пайка трубопроводов и различных деталей электрооборудования.
ПОССу40-2
— припой широкого назначения;
ПОССу30-2
— лужение и пайка в холодильном аппаратостроении, электроламповом производстве;
ПОССу18-2, ПОССу15-2, ПОССу10-2
— пайка в автомобилестроении;
ПОССу8-3
— лужение и пайка в электроламповом производстве;
ПОССу5-1
— лужение и пайка деталей, работающих при повышенных температурах;
ПОССу4-6
— пайка белой жести, лужение и пайка деталей с закатанными и клепанными швами из латуни и меди;
ПОССу4
—
4
— лужение и пайка в автомобилестроении;
ПОСК2-18
— лужение и пайка металлизированных керамических деталей;
ПОСИ30
;
ПСр3И
— пайка меди и ее сплавов и других металлов, неметаллических материалов и стекла с металлическими покрытиями. Пайка деталей радиоэлектронной аппаратуры. Обладает высокой жидкотекучестью и обеспечивает хорошее сцепление спаиваемых поверхностей.
Параметры мягких припоев с низкой температурой плавления приведены в табл. 3.3.
Таблица 3.3
Мягкие припои (сплавы) с низкой температурой плавления
сплав | химический состав, % | температура плавления, °с | ||||||
олово | свинец | кадмий | висмут | серебро | индий | солидус | ликвидус | |
Вуда | 12–13 | 24,5–25,6 | 12–13 | 49–51 | – | – | 66 | 70 |
Розе | 24,5–25,5 | 24,5–25,6 | – | 49–51 | – | – | 90 | 92 |
Д’Арсе | 9,6 | 45,1 | – | 45,3 | – | – | – | 79 |
Липовица с индием | 11,8 | 22,2 | 8,5 | 42 | – | 15,5 | – | 48 |
Примечание. Применяются в радиосхемах с полупроводниковыми приборами и в схемах, где припой используется в качестве температурного предохранителя.
Химический состав и физико-механические свойства твердых серебряных и медно-фосфорных припоев приведены в табл. 3.4.
Таблица 3.4
Химический состав и физико-механические свойства твердых серебряных и медно-фосфорных припоев
Марка припоя | химический состав, % | плотность, кг/м3 | температура кристаллизации,°с | предел прочности при растяжении, Мпа | ||||
серебро | Медь | цинк | фосфор | начало | конец | |||
ПСр72 | 72±0,5 | 28±0,5 | – | – | 9900 | 779 | 779 | – |
ПСр50 | 50±0,5 | 50±0,5 | – | – | 9300 | 850 | 779 | – |
ПСр45 | 45±0,5 | 30±0,5 | 25+1 –1,5 | – | 9100 | 725 | 660 | 300 |
ПСр25 | 25±0,3 | 40±1 | 35±2,5 | – | 8700 | 775 | 745 | 280 |
ПСр71 | 71±0,5 | 28±0,7 | – | 1 ±0,2 | 9800 | 795 | 750 | – |
ПСр25ф | 25±0,5 | 70±1 | – | 5±0,5 | 8500 | 710 | 650 | – |
ПСр15 | 15±0,5 | 80,2±1 | – | 4,8+0,2/–0,3 | 8300 | 810 | 635 | – |
ПМФ7 (МФЗ) | – | Остальное | – | 7–8,5 | – | 860 | 710 | – |
Параметры медно-цинковых и медно-никелевых твердых припоев приведены в табл. 3.5.
Таблица 3.5
Медно-цинковые и медно-никелевые твердые припои
Марка припоя | химический состав, % | физические свойства | |||||||||
Медь | никель | железо | кремний | Бор | цинк | олово | температура кристаллизации, °с | плотность, кг/м3 | предел прочности при растяжении, Мпа | ||
солидус | ликвидус | ||||||||||
Л63 | 62–65 | – | – | – | – | Остальное | – | 900 | 905 | 8500 | 310 |
ЛОК59-0,1-0,3 | 60,5– 63,5 | – | – | 0,2–0,4 | – | Остальное | 0,7–1,1 | 890 | 905 | 8200 | – |
ПЖЛ500 | Остальное | 27–30 | 41,5 | 1,5–2 | 0,2 | – | – | 1080 | 1120 | 8630 | 600 |
Параметры серебряных припоев с пониженной температурой плавления приведены в табл. 3.6.
Таблица 3.6
Серебряные припои с пониженной температурой плавления
Марка припоя | химический состав, % | плотность, кг/м3 | температура кристаллизации, °с | ||||||
серебро | Медь | цинк | кадмий | олово | никель | начало | конец | ||
ПСр50Кд | 50±0,5 | 16±1 | 16±2 | 18±1 | – | – | 9300 | 650 | 635 |
ПСр40 | 40±1 | 16,7+0,7/–0,4 | 17+0,8/–0,4 | 26+0,5/ –1 | – | 0,3±0,2 | 8400 | 605 | 595 |
ПСр62 | 62±0,5 | 28±1 | – | – | 10±1,5 | – | 9700 | 700 | 660 |
Преимущественные области применения твердых припоев приведены в табл. 3.7.
Таблица 3.7
Преимущественные области применения твердых припоев
Марка припоя | область применения |
ПСр72; ПСр50 | Пайка металлокерамических контактов и различных ответственных токоведущих соединений, подвергающихся изгибающим и ударным нагрузкам |
ПСр45 | Пайка меди и ее сплавов, нержавеющих и конструкционных сталей. Пайка короткозамкнутых обмоток роторов и демпферных обмоток высоконагруженных электрических машин. Припой обеспечивает высокую плотность и прочность паяных швов |
ПСр25 | Пайка меди и ее сплавов, нержавеющих и конструкционных сталей, заменяет припой ПСр45 при выполнении менее ответственных соединений |
ПСр71 | Пайка деталей аналогично припою ПСр72, но где требуется большая жидкотекучесть |
ПСр25ф; ПСр15; ПМФ7 | Пайка меди и ее сплавов, в том числе различных токоведущих частей машин и аппаратов, не испытывающих ударных и изгибающих нагрузок |
Л63; ЛОК59-0,1-0,3 | Пайка меди и чугуна. Паяные соединения обладают высокой прочностью и хорошо работают в условиях ударных и изгибающих нагрузок |
ПЖЛ500 | Пайка соединений, работающих при температурах до 600 °С |
Параметры медно-фосфорных припоев приведены в табл. 3.8.
Таблица 3.8
Медно-фосфорные припои
Марка припоя | химический состав, % | температура плавления, °с | |
Медь | фосфор | ||
ПФМ-1 | 90,0–91,5 | 8,5–10 | 725–850 |
ПФМ-2 | 92,5 | 7,5 | 710–715 |
ПФМ-3 | 91,5–93,0 | 7,0–8,5 | 725–860 |
ПМФ7 (МФ3) | Остальное | 7,0–8,5 | 710–860 |
Примечание. Для медно-фосфорных и серебряных припоев в качестве флюса применяют буру в виде порошка или в смеси с поваренной солью.
Параметры припоев для пайки алюминия приведены в табл. 3.9, 3.10.
Таблица 3.9
Химический состав и физические свойства припоев для пайки алюминия
Марка припоя | химический состав, % | температура плавления, °с | предел механической прочности при растяжении, Мпа | |||||
алюминий | Медь | олово | цинк | кадмий | кремний | |||
Кадмиевый | – | – | 36 | 40 | 24 | – | – | 85 |
АВИА-1 | – | – | 55 | 25 | 20 | – | 20 | – |
АВИА-2 | 15 | – | 40 | 25 | 20 | – | 250 | – |
ВПТ-4 | 55 | – | – | 40 | – | 5 | 410 | – |
34-А | 66 | 28 | – | – | – | 6 | 545 | 180 |
35-А | 72 | 2,1 | – | – | – | 7 | 540 | 140 |
А | – | 2,0–1,5 | 40 | 58,5 | – | – | 425 | 80 |
В | 12 | 8 | 80 | – | – | 410 | 185 | |
ЦО-12 | – | – | 12 | 88 | – | – | 500–550 | – |
ЦА-15 | 15 | – | – | 85 | – | – | 550–600 | – |
Таблица 3.10
Другие припои для пайки алюминия
Марка припоя | химический состав, % | температура полного расплавления, °с | температура пайки, °с | плотность, кг/м3 | ||||
олово о1 | цинк | кадмий | алюминий а7 | Медь М0 | ||||
П250А | 79–81 | 19–21 | – | – | 0,15 | 250 | 300 | 7300 |
П300А | – | 50–61 | 39–41 | – | 0,045 | 310 | 360 | 7730 |
П300Б | – | 80 | – | 8 | 0,5 | 410 | 700–750 | – |
Преимущественные области применения припоев для пайки алюминия П250А, П300А и П300Б приведены в табл. 3.11.
Таблица 3.11
Преимущественные области применения припоев для пайки алюминия
Марка припоя | область применения |
П250А | Лужение концов алюминиевых проводов, а также пайка погружением алюминиевых проводов с алюминиевыми и медными наконечниками |
П300А | То же, пайка соединений с повышенной коррозионной стойкостью |
П300Б | Пайка заливкой алюминиевых проводов с алюминиевыми и медными деталями |
По состоянию
Флюсы так же бывают разными по форме и состоянию. Есть твердые, жидкие и пастообразные. В целом они почти полностью различаются по своим параметрам и свойствам.
Жидкие
Жидкие флюсы уже имеют лучше свойства по сравнению с твердыми. Их намного проще наносить и существенно сокращается время пайки. Недостаток — это быстрое высыхание на открытом воздухе, в случае пролива такого состава на поверхность – ее трудно будет оттереть. К такому типу относится, например, жидкая канифоль. Она обычно продается в баночках с кисточкой.
Если вы используете жидкую канифоль – не подносите ее на горячую поверхность кисточкой. Из-за высокой температуры кисточка может деформироваться и ее невозможно вернуть в прежнее состояние.
Твердые
К твердым относится самая обычная канифоль, паяльный жир. Достоинство таких флюсов — это цена и нейтральные свойства. Недостаток – это неудобство нанесения (сначала на паяльник, потом на место пайки и т.д.), некоторые виды пайки недоступны, слабое удаление окислов до и во время пайки, крайне низкий эффект поверхностного натяжения, много следов на месте работ и большое количество испарений при пайке.
Пастообразные
Пастообразные флюсы это лучшие из представленных типов. Например, их очень удобно наносить. Они не высыхают на воздухе, имеют отличные свойства при пайке (зависит, конечно, от цены) и возможны все виды пайки. К недостаткам можно разве что отнести то, что в продаже есть много подделок знаменитых производителей (однако, некоторые подделки по уровню приближаются к эталону), вредные испарения и конечно же цена.
Слишком дешевые флюсы ужасно паяются. Еще одно неоспоримое преимущество пастообразности — это то, что можно использовать шприцы с тонкими иглами (острый наконечник иглы нужно срезать), тем самым очень точно дозируя порцию флюса и не размазывая его по всей плате. К тому же, отмываются просто и некоторые из них допустимо не смывать вообще (которые используются в BGA пайке, где в принципе чистка очень затруднительна).
Лучшее нанесение флюса – это шприц. Вы можете точно и экономно делать дозировку флюса при помощи шприца. К тому же, металлическая игла не деформируется от высокой температуры так, как кисточка и можно смело добавлять флюс в процессе паяльных работ.
Удобное нанесение пастообразного флюса – это еще один плюс в копилку преимуществ пастообразных веществ.
Очень удобно наносить и хранить флюс в шприце с тонкой иглой. Достаточно простого аптечного шприца, острую часть иглы спиливаем и можно свободно сделать длину дозатора как вам удобно. Так же есть и так называемые флюсовые пистолеты, но намного большего размера и не очень удобны при микропайке своими габаритами.
Пасты для микросхем
Выпускается припой и в виде паяльной пасты. Она представляет собой пластичную массу, состоящую из флюса и вяжущего вещества, в которой содержится множество мельчайших шариков оловянно-свинцового припоя с флюсом.
Такие пасты используются для пайки по трафаретам, то есть когда использование обычных способов пайки невозможно из-за небольших размеров компонентов.
Это могут быть микросхемы, компоненты в BGA-корпусах. Пасты наносятся на выводы шпателем и расплавляются феном или инфракрасным паяльником.
Ввиду того, что паяльные пасты быстро высыхают, их хранение должно осуществляться в специальных, герметично закрывающихся тубах.
Для восстановления BGA-корпусов, то есть обновления на их выводах шариков припоя, еще называемого реболингом, производится припой в шариках. Он может быть как оловянно-свинцовым, так и безсвинцовым.
Это высококачественный чистый продукт, с очень точным химическим составом.
Шарики хранятся в банках плотно закрытыми при температуре +20 – +30 ℃ и влажности не более 60-70 %. Срок хранения такого припоя, как правило, не более 12 месяцев. Используется для пайки ответственных компонентов.
Типы паяльников
Паяльник — инструмент, который используется при пайке и лужении, для нагрева флюса и элементов, расплавления припоя и т. д. Рабочую деталь прибора называют жалом, нагрев происходит от паяльной лампы или электрического тока.
Обычно мощность электрического таких инструментов составляет 30−40 Вт, они предназначены для ремонта и установки электронных устройств. Но в работе с полупроводниковой аппаратурой это изделие может вызвать недопустимый перегрев. Для предотвращения таких ситуаций целесообразно приобрести маломощный агрегат с показателями не более 15 В. Паяльники бывают как с периодическим, так и постоянным нагревом. Последние подразделяются:
- Электрические. Имеют встроенный нагревательный элемент, который работает от розетки, аккумулятора или трансформатора.
- Газовые. Оснащены встроенной горелкой, топливо подается обычно из баллона со сжиженным материалом. Внешний источник используется редко.
- Жидкотопливные. По конструкции они похожи на газовые, но нагрев производится от пламени сгорания жидкого топлива.
- Термовоздушные. Работа осуществляется благодаря струе горячего воздуха. Принцип действия напоминает строительный фен, но в этом случае используется тонкая воздушная струя.
- Инфракрасные. Нагреваются от источника ИК-излучения.
Устройства с периодическим нагревом бывают молотковыми и торцевыми. Представлены они в виде массивного наконечника, крепящегося на металлическую ручку, длина которой обеспечивает безопасность работ. Нагрев осуществляется от внешних теплоисточников.
Существуют различные виды припоев и флюсов, которые подходят для работы с конкретными металлами. Разобравшись в особенностях препаратов, выбор нужного материала не займет много времени и не вызовет трудностей.
Чем заменить флюс
Независимо от того, какой флюс используется, готовую пайку нужно обязательно протирать тряпочкой, смоченной в спирте-ректификате или ацетоне, а также прочищать жесткой щеточкой или кисточкой, смоченной растворителем, для удаления остатков флюса и грязи. В некоторых исключительных случаях вместо канифоли можно пользоваться ее заменителями:
- канифольным лаком, имеющимся в продаже в хозяйственных магазинах. Его можно применять как жидкий флюс взамен раствора канифоли в спирте. Этот же лак можно использовать и для антикоррозийного покрытия металлов.
- живицей — смолой сосны или ели — доступным материалом, особенно любителям, живущим в сельской местности. Такой флюс можно приготовить самому. Набранную в лесу с деревьев смолу нужно растопить в жестяной банке на слабом огне (на сильном огне смола может воспламениться). Расплавленную массу разлить в спичечные коробки.
- таблеткой аспирина, имеющейся в любой домашней аптечке. Недостаток этого флюса — неприятный запах дыма, выделяющийся при плавлении аспирина.
Сейчас выпускается большое количество разнообразных, так называемых «безотмывочных», флюсов, как жидких, так и в виде полужидкого геля. Особенность их такова, что они не содержат компонентов, вызывающих окисление и коррозию соединяемых деталей, не проводят электрический ток и не требуют промывки платы после пайки. Хотя все равно лучше после завершения пайки удалять с припаянных деталей все остатки флюса.
Для нанесения жидкого флюса можно воспользоваться кисточкой, ватной палочкой или просто спичкой, но удобнее пользоваться так называемым «флюсапликатором». Можно попробовать купить фирменный флюсапликатор стоимостью примерно 20—30$. Так же удобно пользоваться флюсом в виде геля или пасты. Для его нанесения можно воспользоваться одноразовым шприцем, только из-за его густоты иголку шприцевую придется взять потолще.
Радиолюбительский припой для пайки
Сейчас для пайки пользуются припойной проволокой сечением от 1 до 5 мм. Наиболее распространены 1,5—2 мм многоканальные припои. Многоканальность означает, что внутри оловянной проволоки расположены несколько каналов флюса, который обеспечивает образование ровной блестящей и надежной пайки. Продается такой припой в мотках — на радиорынках, в колбах — в которых он находится свернутым в спираль, и в бобинах (в них количество припоя такое, что его хватит не на один год). Рекомендуется приобретать в виде проволочки, толщиной со спичку — удобнее паять.
При пайке монтажных проводов радиоаппаратуры удобно пользоваться оловянно-свинцовыми припоями, отлитыми в виде тонких прутков диаметром 2 — 2,5 мм. Такие прутки можно изготовить самому, выливая расплавленный припой в сосуд, в дне которого заранее проделано отверстие. Сосуд при этом следует держать над листом жести или металлической плитой. После остывания прутки следует разрезать на куски необходимой длины.
Советуем изучить — Дифференциальная защита
Современные припои, используемые при пайке электронных схем, выпускаются в виде тонких трубочек, заполненных специальной смолой (колофонием), выполняющей функции флюса. Нагретый припой создает внутреннее соединение с такими металлами, как медь, латунь, серебро и т. д., если выполнены следующие условия: поверхности подлежащих пайке деталей должны быть зачищены, то есть с них необходимо удалить образовавшиеся с течением времени пленки окислов, деталь в месте пайки необходимо нагреть до температуры, превышающей температуру плавления припоя. Определенные трудности при этом возникают в случае больших поверхностей с хорошей теплопроводностью, поскольку мощности паяльника может не хватить для ее нагрева.
С температурой плавления менее 200 градусов
Существуют и припои с очень низкой температурой плавления. Это, например, ПОСК-50-18. Из маркировки следует, что олова в этом припое 50% и 18% кадмия, свинца – 32%.
Такой припой плавится при температуре 142 – 145 ℃. Он очень пластичен, но из-за содержания кадмия, токсичен.
Еще одним примером таких легкоплавких припоев служит ПОСВ-50 (у него есть название Розе). Здесь число 50 указывает на содержание висмута в количестве 50%, а олово и свинец присутствуют в составе в равных долях – по 25%.
Температура плавления припоя 90 – 94 ℃. Эти два продукта для пайки выпускаются чаще всего в форме, напоминающей по виду и по размеру таблетки. Третий сплав Вуда, содержит олово в количестве 10%, свинец – 40%, висмут – 40%, кадмий – 10%.
Его температура плавления не превышает значения 72°С. Из-за наличия в своем составе кадмия, он токсичен. Сплавы Розе и Вуда довольно дороги.
Для пайки полупроводников очень часто используют индиевые припои, так как температура плавления их около 117 ℃. В таком сплаве индий выступает вместо олова, а свинец также добавляется, чтобы смягчить его и сделать его более текучим.
Некоторыми индиевыми припоями допускается паять стекло. При этом кромки последнего перед пайкой просто натираются пастой.
Марки мягких припоев для пайки паяльником
Основным компонентом при пайке электрическим паяльником является оловянно-свинцовый припой. Он выпускается в виде проволоки или трубки разных диаметров. Трубчатый припой внутри заполняется канифолью. Такой припой очень удобен при работе, так как не требует дополнительного брать на жало паяльника флюс.
Припой представляет собой сплав легкоплавких металлов. Как правило, в состав припоя входит олово. Можно паять и чистым оловом, но оно дорогое и поэтому в олово добавляют дешевый свинец. Олово является экологически чистым металлом и его можно применять в качестве припоя для пайки в чистом виде пищевой посуды и медицинских инструментов. Если согнуть или сжать трубочку из чистого олова, то она хрустит. Чем больше в составе припоя свинца, тем темнее поверхность припоя.
Припои маркируются буквами и цифрами. Например ПОС-61, что обозначает П – припой, О – оловянный, С – свинцовый, 61 – % содержания олова. ПОС-61 является самым распространенным, так как подходит для пайки в большинстве случаев. В народе ПОС-61 часто называют третник , так как в его составе третья часть свинца (Pb).
Припои бывают мягкие и твердые. Температура плавления мягких припоев ниже 450˚С. Твердые припои плавятся при нагреве свыше 450˚С и для пайки электрическим паяльником не используются.
Основные технические характеристики мягких припоев для пайки электрическим паяльником
Марка припоя | Состав % от общей массы | Температура плавления ˚С | Прочность при растяжении кг/мм | Область применения |
Сплав Вуда | Олово — 12,5 Свинец — 25 Висмут — 50 Кадмий — 12,5 | 68,5 | – | Для пайки и лужения деталей, чувствительных к перегреву, для изготовления предохранителей, токсичен |
Сплавд Арсе | Олово — 6,9 Свинец — 45,1 Висмут — 45,3 | 79 | – | Для пайки и лужения деталей, чувствительных к перегреву, для изготовления предохранителей |
ПОСВ-50 Сплав Розе | Олово — 25 Свинец — 25 Висмут — 50 | 94 | – | Для пайки и лужения деталей, чувствительных к перегреву |
ПОСВ-33 | Олово — 33,4 Свинец — 33,3 Висмут — 33,3 | 130 | – | Для пайки деталей из меди, латуни, константана с герметичным швом |
ПОС-61 (третник) | Олово — 61 Свинец — 39 | 190 | 4,3 | Для пайки и лужения токоведущих частей из меди, латуни и бронзы с герметичным швом |
ПОС-61М | Олово — 61 Свинец — 37 Медь — 2 | 192 | 4,5 | Для лужения и пайки тонких медных проводов и печатных проводников |
ПОС-90 | Олово — 90 Свинец — 10 | 220 | 4,9 | Для лужения и пайки посуды для пищи и медицинских инструментов |
ПОС-40 | Олово — 40 Свинец — 60 | 238 | 3,8 | Для лужения и пайки контактных поверхностей в радиоаппаратуре и деталей из оцинкованной стали |
ПОС-30 | Олово — 30 Свинец — 70 | 266 | 3,2 | Для лужения и пайки деталей из меди, ее сплавов и стали |
ПОС-10 | Олово — 10 Свинец — 90 | 299 | 3,2 | Для лужения и пайки контактных поверхностей в радиоаппаратуре |
Авиа — 1 | Олово — 55 Цинк — 25 Кадмий — 20 | 200 | – | Для пайки тонкостенных деталей из алюминия и его сплавов, токсичен |
Авиа — 2 | Олово — 40 Цинк — 25 Кадмий — 20 Алюминий — 15 | 250 | – | Для пайки тонкостенных деталей из алюминия и его сплавов, токсичен |
Удельное электрическое сопротивление оловянно-свинцового припоя (проводимость) составляет 0,1-0,2 Ом/метр, алюминия 0,0271, а меди 0,0175. Как видите, припой проводит ток в десять раз хуже, чем медь или алюминий.
Наиболее распространенным припоем является ПОС-61, его еще называют третник. Он отлично подходит для пайки и лужения токоведущих частей из меди, латуни и бронзы с герметичным швом и не дорогой. Подходит практически для всех случаев пайки в быту.
Использование ПОС
Первооткрыватели этого сплава были приятно удивлены, что он превращается в расплавленное состояние при меньшей температуре, а эвтектическая смесь способна играть роль растворителя для добавленного металла. Так и были разработаны самые первые марки припоев ПОС.
Свинцовые варианты
Такие смеси с содержанием свинца, отличаются мягкостью, быстрым расплавлением и лёгкой обработкой, поэтому получили название свинецсодержащие припои. Они вредны, поэтому были запрещены для использования во время спайки элементов электрических приборов по всему миру. Процент содержание кадмия, ртути, а также аналогичных вредоносных компонентов в оборудовании строго регламентировано и проверяется соответствующими организациями.
Припой для пайки алюминия 34А
Состав припоя позволяет применять его для пайки чистого алюминия и его сплавов, алюминия с медью и ее сплавами. Продукт 34А нашел применение во многих сферах традиционной и современной промышленности.
Сплав подходит для пайки с использованием ацетил-кислородных, пропан-бутановых и пропановых газовых горелок. Его не рекомендуется использовать для работ со сплавами Д1 и Д16, а также с составами, содержащими более 3% магния.
Срок годности продукта неограничен.
Производители специально разрабатывают высокотехнологические припои для восстановления и ремонта алюминиевых деталей, чтобы во время процесса пайки не требовалось использование дорогостоящего сварочного оборудования. С такими продуктами легко можно добиться эластичности и прочности шва, который устоит даже при высоких нагрузках на отремонтированную деталь. С правильно подобранными припоями алюминиевые изделия можно восстановить или соединить в считанные минуты.
Требования к радиолюбительским флюсам
Выбор флюса — важный вопрос. Раньше использовалась только канифоль, другого флюса не было. Чем плоха канифоль — канифоль, спиртовой канифольный флюс относятся к категории активных флюсов. Первый недостаток — при высоких температурах удаляется не только оксид металла, но и сам металл. Второй недостаток — очистка платы после пайки с канифолью является большой проблемой. Смыть остатки можно только спиртом или растворителями (да и то, порой проще отковырять чем-то острым). Остатки флюса на плате не только некрасиво с эстетической точки зрения, но и вредно. На платах с малыми зазорами между проводников возможен рост дендритов (проще говоря, замыканий) вызванных гальваническими процессами на загрязненной поверхности. Каков же выход — на современном рынке материалов можно найти широкую гамму флюсов, которые смываются обычной водой, не разрушают жало паяльника и обеспечивают высокое качество пайки. Продаются такие флюсы, как правило, в шприцах, что очень удобно для использования.