Магнитные свойства материала — это класс физических явлений, опосредованных полями. Электрические токи и магнитные моменты элементарных частиц порождают поле, которое действует на другие токи. Наиболее знакомые эффекты возникают в ферромагнитных материалах, которые сильно притягиваются магнитными полями и могут намагничиваться, превращаясь в постоянные, создавая сами заряженные поля.
Только несколько веществ являются ферромагнитными. Для определения уровня развитости этого феномена в конкретной субстанции существует классификация материалов по магнитным свойствам. Наиболее распространенными являются железо, никель и кобальт и их сплавы. Приставка ферро- относится к железу, потому что постоянный магнетизм впервые наблюдался в порожняке, форме природной железной руды, называемой магнитными свойства материала, Fe3O4.
Вам будет интересно:Технология «Педагогическая мастерская»: понятие, основные функции, характеристика проведения и анализ эффективности
Парамагнитные материалы
Хотя ферромагнетизм ответственен за большинство эффектов магнетизма, встречающихся в повседневной жизни, все другие материалы в некоторой степени подвержены влиянию поля, а также некоторых других типов магнетизма. Парамагнитные вещества, такие как алюминий и кислород, слабо притягиваются к приложенному магнитному полю. Диамагнитные вещества, такие как медь и углерод, слабо отталкиваются.
Вам будет интересно:Какие существуют окончания писем на английском?
В то время как антиферромагнитные материалы, такие как хром и спиновые стекла, имеют более сложную связь с магнитным полем. Сила магнита на парамагнитных, диамагнитных и антиферромагнитных материалах обычно слишком слаба, чтобы ее можно было почувствовать, и ее можно обнаружить только лабораторными приборами, поэтому эти вещества не входят в список материалов, обладающих магнитными свойствами.
Ферриты
Ферриты представляют собой класс магнитных материалов, состоящих из оксидов железа (Fe2O3) и других металлов (NiO, MgO, ZnO, MnO, CuO, BaO и др.). Состав ферритов можно записать формулой
МеО⋅Fe2o3, где
Me –двухвалентный металл.
Компоненты, входящие в ферриты, образуют между собой обширные области твердых растворов, в которых присутствуют магнитные материалы с очень широким диапазоном свойств. Эти материалы могут быть магнитно-твердыми и магнитно-мягкими.
Процесс производства ферритов
Процесс производства ферритов представляет собой сложный комплекс технологических операций, так как электромагнитные свойства ферритов изменяются при незначительных отклонениях от состава шихты, зернистости порошков, удельного давления при прессовании, температуры и времени спекания.
Процесс производства ферритов состоит из следующих этапов:
- составление, смешивание, помол и отжиг шихты;
- введение пластификаторов, второе смешивание с помолом и протирка шихты;
- прессование и спекание.
В зависимости от состава ферритов их спекание проводят при температурах от 900 до 1400 °С в воздушной среде. Однако в некоторых случаях применяют инертную среду. После обжига изделия проверяют на отсутствие трещин, сколов, сохранение конфигурации и размеров, а также на электромагнитные параметры.
Магнитные свойства ферритов зависят от химического состава, условий спекания и режима последующего охлаждения. В зависимости от этих условий ферриты могут иметь начальную магнитную проницаемость от единицы до 4000. Индукция насыщения ферритов бывает не высокой. Так при полях в 8–12 кА/м индукция насыщения составляет не более 0,4 Тл. Ферриты трудно намагничиваются, и полное магнитное насыщение у них наступает при очень сильных полях.
Удельное электрическое сопротивление ферритов колеблется в пределах 0,1·105 Ом·м, в то время как у металлов оно составляет не более 10-6 мОм⋅. Ферриты представляют собой соединения сложного структурного строения. Наиболее распространены ферриты типа шпинели, у которых элементарные ячейки аналогичны природному минералу MgO⋅Al2O3. Имеются ферриты с гексагональной решеткой, строение которых аналогично природному материалу Pb(Fe·Mn)12O19. Кроме того существуют ферриты с элементарной ячейкой, подобной природному минералу – гранату и ферриты типа перовскита, аналогичные по структуре природному минералу CaO⋅TiO2.
Ферриты применяют для изготовления деталей радиоприемников, телевизоров, запоминающих и вычислительных устройств, систем магнитной записи и в качестве конструкционного материала для построения элементов связи.
Новыми перспективными магнитными материалами являются постоянные магниты на основе редкоземельных металлов, и аморфные магнитные материалы. Магниты на основе редкоземельных металлов представляют собой соединения редкоземельных элементов с кобальтом типа:
RCO5, где
– R–Sm, Pr, Cd, Ce.
Они имеют высокую магнитную энергию ( 250 – 290 мДж/м3) и применяются в микроволновых устройствах, авиационной, космической и других отраслях техники.
Аморфные магнитные материалы имеют состав, который можно описать формулой:
T75-83M25-17, где
- Т – Fe, Co, Ni (могут быть микродобавки других металлов);
- M – P, C, B, Si, Al.
Аморфные материалы не имеют границ зерен, и величина коэрцитивной силы в них исчезающе мала ( порядка 0,5 А/м). Они используются для изготовления магнитных экранов, головок магнитнозаписывающих устройств, сердечников реле и других изделий.
История
Магнитные свойства материала были впервые обнаружены в древнем мире, когда люди заметили, что магниты, естественно намагниченные кусочки минералов, могут притягивать железо. Слово «магнит» происходит от греческого термина μαγνῆτις λίθος magnētis lithos, «магнезиальный камень, подножный камень».
Вам будет интересно:Ульяновская государственная сельскохозяйственная академия имени Столыпина
В Древней Греции Аристотель приписал первое из того, что можно назвать научной дискуссией о магнитных свойствах материалов, философу Фалесу Милетскому, который жил с 625 г. до н. э. до 545 г. до н. э. Древний индийский медицинский текст «Сушрута самхита» описывает использование магнетита для удаления стрел, встроенных в тело человека.
Древний Китай
В древнем Китае самая ранняя литературная ссылка на электрические и магнитные свойства материалов содержится в книге IV века до нашей эры, названной в честь ее автора, «Мудрец Долины Призраков». Самое раннее упоминание о притягивании иглы — в работе I века Луньхэн («Сбалансированные запросы»): «Магнит притягивает иголку».
Китайский ученый XI века Шэнь Куо был первым человеком, который описал — в «Эссе пула снов» — магнитный компас с иглой и то, что он улучшил точность навигации с помощью астрономических методов. Концепция истинного севера. К 12-му веку китайцы, как было известно, использовали компас-магнит для навигации. Они вылепили направляющую ложку из камня так, что ручка ложки всегда указывала на юг.
Магнитная твердость и мягкость
Явление гистерезиса сильно влияет на магнитные свойства материалов. Вещества, у которых на графике гистерезиса петля расширена, требующие для размагничивания значительной коэрцитивной силы, называют магнитотвердыми, материалы с узкой петлей, гораздо легче поддающиеся размагничиванию – магнитомягкими.
В переменных полях магнитный гистерезис проявляется особенно ярко. Он всегда сопровождается выделением тепла. Кроме того, в переменном магнитном поле в магнетике возникают вихревые индукционные токи, выделяющие особенно много тепла.
Многие ферромагнетики и ферримагнетики применяются в оборудовании, функционирующем на переменном токе (например, сердечники электромагнитов) и при работе все время перемагничиваются. Для того чтобы уменьшить энергопотери на гистерезис и динамические потери на вихревые токи, в таком оборудовании применяют магнитомягкие материалы, такие как чистое железо, ферриты, электротехнические стали, сплавы (например, пермаллой). Есть и другие способы минимизировать потери энергии.
Магнитотвердые вещества, напротив, используются в оборудовании, работающем на постоянном магнитном поле. Они значительно дольше сохраняют остаточную намагниченность, но их труднее намагнитить до насыщения. Многие из них в настоящее время представляют собой композиты разных типов, например, металлокерамические или неодимовые магниты.
Средневековье
Александр Неккам, к 1187 году, был первым в Европе, кто описал компас и его использование для навигации. Этот исследователь впервые в Европе досконально установил, какими свойствами обладают магнитные материалы. В 1269 году Питер Перегрин де Марикур написал Epistola de magnete, первый сохранившийся трактат, описывающий свойства магнитов. В 1282 году свойства компасов и материалов с особыми магнитными свойствами описал аль-Ашраф, йеменский физик, астроном и географ.
Литература
- Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C.330- 335.
- Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. шк. с рус. яз. обучения / В. В. Жилко, А.В. Лавриненко, Л. Г. Маркович. — Мн.: Нар. асвета, 2002. — С. 291-297.
- Слободянюк А.И. Физика 10. §13 Взаимодействие магнитного поля с веществом
Ренессанс
В 1600 году Уильям Гилберт опубликовал свои «Магнетический корпус» и «Магнитное теллур» («О магните и магнитных телах, а также о Великом магните Земли»). В этой работе он описывает многие из своих экспериментов со своей модельной землей, называемой терреллой, с помощью которой он проводил исследование свойств магнитных материалов.
Из своих экспериментов он пришел к выводу, что Земля сама по себе является магнитной и что именно поэтому компасы указывали на север (ранее некоторые полагали, что именно полярная звезда (Polaris) или большой магнитный остров на Северном полюсе притягивал компас).
Магнитные полюса и магнитное поле.
Магнитные свойства стержневого магнита наиболее заметны вблизи его концов. Если такой магнит подвесить за среднюю часть так, чтобы он мог свободно поворачиваться в горизонтальной плоскости, то он займет положение, примерно соответствующее направлению с севера на юг. Конец стержня, указывающий на север, называют северным полюсом, а противоположный конец – южным полюсом. Разноименные полюса двух магнитов притягиваются друг к другу, а одноименные взаимно отталкиваются.
Также по теме:
МАГНИТНОЕ ПОЛЕ ЗЕМЛИ
Если к одному из полюсов магнита приблизить брусок ненамагниченного железа, то последний временно намагнитится. При этом ближний к полюсу магнита полюс намагниченного бруска будет противоположным по наименованию, а дальний – одноименным. Притяжением между полюсом магнита и индуцированным им в бруске противоположным полюсом и объясняется действие магнита. Некоторые материалы (например, сталь) сами становятся слабыми постоянными магнитами после того, как побывают около постоянного магнита или электромагнита. Стальной стержень можно намагнитить, просто проведя по его торцу концом стержневого постоянного магнита.
Итак, магнит притягивает другие магниты и предметы из магнитных материалов, не находясь в соприкосновении с ними. Такое действие на расстоянии объясняется существованием в пространстве вокруг магнита магнитного поля. Некоторое представление об интенсивности и направлении этого магнитного поля можно получить, насыпав на лист картона или стекла, положенный на магнит, железные опилки. Опилки выстроятся цепочками в направлении поля, а густота линий из опилок будет соответствовать интенсивности этого поля. (Гуще всего они у концов магнита, где интенсивность магнитного поля наибольшая.)
М.Фарадей (1791–1867) ввел для магнитов понятие замкнутых линий индукции. Линии индукции выходят в окружающее пространство из магнита у его северного полюса, входят в магнит у южного полюса и проходят внутри материала магнита от южного полюса обратно к северному, образуя замкнутую петлю. Полное число линий индукции, выходящих из магнита, называется магнитным потоком. Плотность магнитного потока, или магнитная индукция (В
), равна числу линий индукции, проходящих по нормали через элементарную площадку единичной величины.
Магнитной индукцией определяется сила, с которой магнитное поле действует на находящийся в нем проводник с током. Если проводник, по которому проходит ток I
, расположен перпендикулярно линиям индукции, то по закону Ампера сила
F
, действующая на проводник, перпендикулярна и полю, и проводнику и пропорциональна магнитной индукции, силе тока и длине проводника. Таким образом, для магнитной индукции
B
можно написать выражение
где F
– сила в ньютонах,
I
– ток в амперах,
l
– длина в метрах. Единицей измерения магнитной индукции является тесла (Тл). См. также ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ.
Новое время
Понимание взаимосвязи между электричеством и материалами со специальными магнитными свойствами появилось в 1819 году в работе Ханса Кристиана Эрстеда, профессора в Копенгагенском университете, который обнаружил в результате случайного подергивания стрелки компаса возле провода, что электрический ток может создать магнитное поле. Этот знаменательный эксперимент известен как Эксперимент Эрстеда. Несколько других экспериментов последовали с Андре-Мари Ампера, который в 1820 году обнаружил, что магнитное поле, циркулирующее по замкнутому пути, было связано с током, протекающим по периметру пути.
Вам будет интересно:Правильная шестиугольная пирамида. Формулы объема и площади поверхности. Решение геометрической задачи
Карл Фридрих Гаусс занимался исследованием магнетизма. Жан-Батист Био и Феликс Савар в 1820 году придумали закон Био-Савара, дающий нужное уравнение. Майкл Фарадей, который в 1831 году обнаружил, что изменяющийся во времени магнитный поток через петлю провода вызывал напряжение. А другие ученые находили дальнейшие связи между магнетизмом и электричеством.
Намагничивающая сила и напряженность магнитного поля.
Далее следует ввести еще одну величину, характеризующую магнитное действие электрического тока. Предположим, что ток проходит по проводу длинной катушки, внутри которой расположен намагничиваемый материал. Намагничивающей силой называется произведение электрического тока в катушке на число ее витков (эта сила измеряется в амперах, так как число витков – величина безразмерная). Напряженность магнитного поля Н
равна намагничивающей силе, приходящейся на единицу длины катушки. Таким образом, величина
Н
измеряется в амперах на метр; ею определяется намагниченность, приобретаемая материалом внутри катушки.
В вакууме магнитная индукция B
пропорциональна напряженности магнитного поля
Н
:
где m
0 – т.н. магнитная постоянная, имеющая универсальное значение 4
p
Ч10–7 Гн/м. Во многих материалах величина
B
приблизительно пропорциональна
Н
. Однако в ферромагнитных материалах соотношение между
B
и
Н
несколько сложнее (о чем будет сказано ниже).
На рис. 1 изображен простой электромагнит, предназначенный для захвата грузов. Источником энергии служит аккумуляторная батарея постоянного тока. На рисунке показаны также силовые линии поля электромагнита, которые можно выявить обычным методом железных опилок.
Крупные электромагниты с железными сердечниками и очень большим числом ампер-витков, работающие в непрерывном режиме, обладают большой намагничивающей силой. Они создают магнитную индукцию до 6 Тл в промежутке между полюсами; эта индукция ограничивается лишь механическими напряжениями, нагреванием катушек и магнитным насыщением сердечника. Ряд гигантских электромагнитов (без сердечника) с водяным охлаждением, а также установок для создания импульсных магнитных полей был сконструирован П.Л.Капицей (1894–1984) в Кембридже и в Институте физических проблем АН СССР и Ф.Биттером (1902–1967) в Массачусетском технологическом институте. На таких магнитах удавалось достичь индукции до 50 Тл. Сравнительно небольшой электромагнит, создающий поля до 6,2 Тл, потребляющий электрическую мощность 15 кВт и охлаждаемый жидким водородом, был разработан в Лосаламосской национальной лаборатории. Подобные поля получают при криогенных температурах.
ХХ век и наше время
Джеймс Клерк Максвелл синтезировал и расширил это понимание уравнений Максвелла, объединив электричество, магнетизм и оптику в области электромагнетизма. В 1905 году Эйнштейн использовал эти законы, мотивируя свою теорию специальной теории относительности, требуя, чтобы законы сохранялись во всех инерциальных системах отсчета.
Электромагнетизм продолжал развиваться в XXI веке, будучи включенным в более фундаментальные теории калибровочной теории, квантовой электродинамики, электрослабой теории и, наконец, в стандартную модель. В наше время ученые уже вовсю изучают магнитные свойства наноструктурных материалов. Но самые великие и удивительные открытия в этой области, вероятно, все еще ждут нас впереди.
Теории магнетизма.
Впервые догадка о том, что магнитные явления в конечном счете сводятся к электрическим, возникла у Ампера в 1825, когда он высказал идею замкнутых внутренних микротоков, циркулирующих в каждом атоме магнита. Однако без какого-либо опытного подтверждения наличия в веществе таких токов (электрон был открыт Дж.Томсоном лишь в 1897, а описание структуры атома было дано Резерфордом и Бором в 1913) эта теория «увяла». В 1852 В.Вебер высказал предположение, что каждый атом магнитного вещества представляет собой крошечный магнит, или магнитный диполь, так что полная намагниченность вещества достигается, когда все отдельные атомные магниты оказываются выстроенными в определенном порядке (рис. 4,б
). Вебер полагал, что сохранять свое упорядочение вопреки возмущающему влиянию тепловых колебаний этим элементарным магнитам помогает молекулярное или атомное «трение». Его теория смогла объяснить намагничивание тел при соприкосновении с магнитом, а также их размагничивание при ударе или нагреве; наконец, объяснялось и «размножение» магнитов при разрезании намагниченной иглы или магнитного стержня на части. И все же эта теория не объясняла ни происхождения самих элементарных магнитов, ни явлений насыщения и гистерезиса. Теория Вебера была усовершенствована в 1890 Дж.Эвингом, заменившим его гипотезу атомного трения идеей межатомных ограничивающих сил, помогающих поддерживать упорядочение элементарных диполей, которые составляют постоянный магнит.
Подход к проблеме, предложенный когда-то Ампером, получил вторую жизнь в 1905, когда П.Ланжевен объяснил поведение парамагнитных материалов, приписав каждому атому внутренний нескомпенсированный электронный ток. Согласно Ланжевену, именно эти токи образуют крошечные магниты, хаотически ориентированные, когда внешнее поле отсутствует, но приобретающие упорядоченную ориентацию после его приложения. При этом приближение к полной упорядоченности соответствует насыщению намагниченности. Кроме того, Ланжевен ввел понятие магнитного момента, равного для отдельного атомного магнита произведению «магнитного заряда» полюса на расстояние между полюсами. Таким образом, слабый магнетизм парамагнитных материалов обусловлен суммарным магнитным моментом, создаваемым нескомпенсированными электронными токами.
В 1907 П.Вейс ввел понятие «домена», ставшее важным вкладом в современную теорию магнетизма. Вейс представлял домены в виде небольших «колоний» атомов, в пределах которых магнитные моменты всех атомов в силу каких-то причин вынуждены сохранять одинаковую ориентацию, так что каждый домен намагничен до насыщения. Отдельный домен может иметь линейные размеры порядка 0,01 мм и соответственно объем порядка 10–6 мм3. Домены разделены так называемыми блоховскими стенками, толщина которых не превышает 1000 атомных размеров. «Стенка» и два противоположно ориентированных домена схематически изображены на рис. 5. Такие стенки представляют собой «переходные слои», в которых происходит изменение направления намагниченности доменов.
В общем случае на кривой первоначального намагничивания можно выделить три участка (рис. 6). На начальном участке стенка под действием внешнего поля движется сквозь толщу вещества, пока не встретит дефект кристаллической решетки, который ее останавливает. Увеличив напряженность поля, можно заставить стенку двигаться дальше, через средний участок между штриховыми линиями. Если после этого напряженность поля вновь уменьшить до нуля, то стенки уже не вернутся в исходное положение, так что образец останется частично намагниченным. Этим объясняется гистерезис магнита. На конечном участке кривой процесс завершается насыщением намагниченности образца за счет упорядочения намагниченности внутри последних неупорядоченных доменов. Такой процесс почти полностью обратим. Магнитную твердость проявляют те материалы, у которых атомная решетка содержит много дефектов, препятствующих движению междоменных стенок. Этого можно достичь механической и термической обработкой, например путем сжатия и последующего спекания порошкообразного материала. В сплавах алнико и их аналогах тот же результат достигается путем сплавления металлов в сложную структуру.
Кроме парамагнитных и ферромагнитных материалов, существуют материалы с так называемыми антиферромагнитными и ферримагнитными свойствами. Различие между этими видами магнетизма поясняется на рис. 7. Исходя из представления о доменах, парамагнетизм можно рассматривать как явление, обусловленное наличием в материале небольших групп магнитных диполей, в которых отдельные диполи очень слабо взаимодействуют друг с другом (или вообще не взаимодействуют) и потому в отсутствие внешнего поля принимают лишь случайные ориентации (рис. 7,а
). В ферромагнитных же материалах в пределах каждого домена существует сильное взаимодействие между отдельными диполями, приводящее к их упорядоченному параллельному выстраиванию (рис. 7,
б
). В антиферромагнитных материалах, напротив, взаимодействие между отдельными диполями приводит к их антипараллельному упорядоченному выстраиванию, так что полный магнитный момент каждого домена равен нулю (рис. 7,
в
). Наконец, в ферримагнитных материалах (например, ферритах) имеется как параллельное, так и антипараллельное упорядочение (рис. 7,
г
), итогом чего оказывается слабый магнетизм.
Имеются два убедительных экспериментальных подтверждения существования доменов. Первое из них – так называемый эффект Баркгаузена, второе – метод порошковых фигур. В 1919 Г.Баркгаузен установил, что при наложении внешнего поля на образец из ферромагнитного материала его намагниченность изменяется небольшими дискретными порциями. С точки зрения доменной теории это не что иное, как скачкообразное продвижение междоменной стенки, встречающей на своем пути отдельные задерживающие ее дефекты. Данный эффект обычно обнаруживается с помощью катушки, в которую помещается ферромагнитный стерженек или проволока. Если поочередно подносить к образцу и удалять от него сильный магнит, образец будет намагничиваться и перемагничиваться. Скачкообразные изменения намагниченности образца изменяют магнитный поток через катушку, и в ней возбуждается индукционный ток. Напряжение, возникающее при этом в катушке, усиливается и подается на вход пары акустических наушников. Щелчки, воспринимаемые через наушники, свидетельствует о скачкообразном изменении намагниченности.
Для выявления доменной структуры магнита методом порошковых фигур на хорошо отполированную поверхность намагниченного материала наносят каплю коллоидной суспензии ферромагнитного порошка (обычно Fe3O4). Частицы порошка оседают в основном в местах максимальной неоднородности магнитного поля – на границах доменов. Такую структуру можно изучать под микроскопом. Был предложен также метод, основанный на прохождении поляризованного света сквозь прозрачный ферромагнитный материал.
Первоначальная теория магнетизма Вейса в своих основных чертах сохранила свое значение до настоящего времени, получив, однако, обновленную интерпретацию на основе представления о нескомпенсированных электронных спинах как факторе, определяющем атомный магнетизм. Гипотеза о существовании собственного момента у электрона была выдвинута в 1926 С.Гаудсмитом и Дж.Уленбеком, и в настоящее время в качестве «элементарных магнитов» рассматриваются именно электроны как носители спина.
Для пояснения этой концепции рассмотрим (рис. свободный атом железа – типичного ферромагнитного материала. Две его оболочки (K
и
L
), ближайшие к ядру, заполнены электронами, причем на первой из них размещены два, а на второй – восемь электронов. В
K
-оболочке спин одного из электронов положителен, а другого – отрицателен. В
L
-оболочке (точнее, в двух ее подоболочках) у четырех из восьми электронов положительные, а у других четырех – отрицательные спины. В обоих случаях спины электронов в пределах одной оболочки полностью компенсируются, так что полный магнитный момент равен нулю. В
M
-оболочке ситуация иная, поскольку из шести электронов, находящихся в третьей подоболочке, пять электронов имеют спины, направленные в одну сторону, и лишь шестой – в другую. В результате остаются четыре нескомпенсированных спина, чем и обусловлены магнитные свойства атома железа. (Во внешней
N
-оболочке всего два валентных электрона, которые не дают вклада в магнетизм атома железа.) Сходным образом объясняется магнетизм и других ферромагнетиков, например никеля и кобальта. Поскольку соседние атомы в образце железа сильно взаимодействуют друг с другом, причем их электроны частично коллективизируются, такое объяснение следует рассматривать лишь как наглядную, но весьма упрощенную схему реальной ситуации.
Теорию атомного магнетизма, основанную на учете спина электрона, подкрепляют два интересных гиромагнитных эксперимента, один из которых был проведен А.Эйнштейном и В.де Гаазом, а другой – С.Барнеттом. В первом из этих экспериментов цилиндрик из ферромагнитного материала подвешивался так, как показано на рис. 9. Если по проводу обмотки пропустить ток, то цилиндрик поворачивается вокруг своей оси. При изменении направления тока (а следовательно, и магнитного поля) он поворачивается в обратном направлении. В обоих случаях вращение цилиндрика обусловлено упорядочением электронных спинов. В эксперименте Барнетта, наоборот, так же подвешенный цилиндрик, резко приведенный в состояние вращения, в отсутствие магнитного поля намагничивается. Этот эффект объясняется тем, что при вращении магнетика создается гироскопический момент, стремящийся повернуть спиновые моменты по направлению собственной оси вращения.
За более полным объяснением природы и происхождения короткодействующих сил, упорядочивающих соседние атомные магнитики и противодействующих разупорядочивающему влиянию теплового движения, следует обратиться к квантовой механике. Квантово-механическое объяснение природы этих сил было предложено в 1928 В.Гейзенбергом, который постулировал существование обменных взаимодействий между соседними атомами. Позднее Г.Бете и Дж.Слэтер показали, что обменные силы существенно возрастают с уменьшением расстояния между атомами, но по достижении некоторого минимального межатомного расстояния падают до нуля.
Суть
Магнитные свойства материалов в основном обусловлены магнитными моментами орбитальных электронов их атомов. Магнитные моменты ядер атомов обычно в тысячи раз меньше, чем у электронов, а посему они незначительны в контексте намагничивания материалов. Ядерные магнитные моменты тем не менее очень важны в других контекстах, особенно в ядерно-магнитном резонансе (ЯМР) и магнитно-резонансной томографии (МРТ).
Обычно огромное количество электронов в материале устроено так, что их магнитные моменты (как орбитальные, так и внутренние) сводятся на нет. В некоторой степени это связано с тем, что электроны объединяются в пары с противоположными собственными магнитными моментами в результате принципа Паули (см. Конфигурацию электронов) и объединяются в заполненные подоболочки с нулевым суммарным орбитальным движением.
В обоих случаях электроны преимущественно используют схемы, в которых магнитный момент каждого электрона нейтрализуется противоположным моментом другого электрона. Более того, даже когда конфигурация электронов такова, что существуют неспаренные электроны и / или незаполненные подоболочки, часто бывает так, что различные электроны в твердом теле будут вносить магнитные моменты, которые указывают в разных, случайных направлениях, так что материал не будет магнитным.
Иногда, либо самопроизвольно, либо из-за приложенного внешнего магнитного поля — каждый из магнитных моментов электронов будет в среднем выстроен в линию. Подходящий материал может затем создать сильное чистое магнитное поле.
Магнитное поведение материала зависит от его структуры, в частности от электронной конфигурации, по причинам, указанным выше, а также от температуры. При высоких температурах случайное тепловое движение затрудняет выравнивание электронов.
Магнитные материалы их свойства, применение, классификация
Для создания элементов и устройств систем управления и автоматики используются магнитные материалы, в которых, главным образом, выставляют такие требования:
1.Материал должен легко намагничиваться под действием постоянного поля или однополярного импульса поля и легко перемагничиваются в переменном поле, есть петля гистерезиса должна быть достаточно узкой с малым значением Н С и большим значением m. Такие требования позволяют повысить чувствительность электромагнитных элементов.
2.Материалы должен иметь большое значение индукции насыщения В S, т.е. обеспечивать проникновение большого магнитного потока в сердечник с соответствующим поперечным сечением. Выполнение такого требования позволяет получить наименьшие габариты и массу устройства, а если заданы габариты — то наибольшую мощность или напряжение на выходе устройства.
3.Пид работе в переменном магнитном поле в материале должны быть наименьшие затраты, которые образуют вихревые токи, магнитная вязкость и гистерезис, потому что они определяют рабочую температуру сердечника и устройства. Их снижение не только повышает КПД устройства, а также позволяет создать элементы, которые работают на повышенных частотах (400, 500, 1000 Гц и более) и имеют значительно большее быстродействие и меньшие габариты и массу, чем элементы, которые питаются напряжением промышленной частоты 50 Гц .
Кроме перечисленных основных требований к магнитных материалов, используемых в тех или других электромагнитных устройствах, выставляют специфические требования.
Так, для улучшения температурной стабильности (неизменности магнитных свойств при изменении температуры окружающей среды) важно, чтобы точка Кюри материала была как можно выше.
Чем ближе к единице коэффициент прямоугольности материала, тем линейная зависимость выходного сигнала от входного, тем легче распознаются сигналы в цифровых устройствах.
Ярко обнаружена магнитная анизотропия повышает качество устройств на тонких магнитных пленках, а высокая чистота кристаллической структуры материала является необходимым условием создания устройств на цилиндрических магнитных доменах.
Магнитные материалы можно разделить на магнитно-твердые, для которых напряженность Н с составляет десятки и сотни ампер на сантиметр и магнитно-мягкие с напряженностью Н с в десятые и сотые доли ампера на сантиметр. Магнитно-твердые материалы используются для изготовления постоянных магнитов, магнитно-мягкие — для изготовления элементов, в которых поле создается токами, проходящими по обмотках.
Для создания элементов и устройств СУА применяют, главным образом, магнитно-мягкие материалы. Магнитно-твердые порошковые материалы входят в феролакы, которыми покрывают магнитные ленты и диски.
Магнитно-мягкие материалы, можно разделить на три группы: электротехнические стали, сплавы на основе железа с другими металлами (никель, кобальт, алюминий) и ферриты (неметаллические ферромагнетики).
Электротехнические стали наиболее дешевые материалы, имеющие большие индукции насыщения (порядка 1,8 … 2,3 Тл), и это позволяет создавать из них компактные и дешевые электромагнитные элементы. Но из-за относительно большой (по сравнению с железоникелевых сплавами) коэрцитивная силу электротехнической стали (порядка 0,1 ¸ 0,5 А / см) чувствительность стальных элементов к изменениям внешнего поля, которое образуется обмотками, невелика.
Зализоникелевые сплавы (пермаллоя) дороже стальных в 15-20 раз, имеют меньшую индукцию насыщения, но позволяют получать высокочувствительные магнитные элементы за счет малой коэрцитивной силы и высокой начальной магнитной проницаемости. Зализоникелеви сплавы изготовляют в виде листов или лент. Толщина ленты иногда достигает нескольких микрометров.[adsense_id=»1″]
Зализоалюминиевые сплавы 16ЮХ и 16ЮМ, которые содержат в своем составе 16% алюминия, по магнитным свойствам не уступают пермаллой, но имеют повышенную (10 … 20 раз больше, чем в пермаллой) износостойкость. Их широко применяют для изготовления магнитных головок в устройствах магнитной записи, где в процессе работы головка непрерывно трется о поверхность ленты.
Ферриты — это неметаллические магнитные материалы (твердые растворы), изготовленные из смеси оксидов железа с оксидами магния, меди, марганца, никеля и других металлов. Общая формула ферритов имеет вид МеO × Fе2 Оз, где Me — любой металл.
Оксиды измельчают на маленькие куски и смешивают в определенной пропорции. Магнитопроводы необходимых размеров и конфигураций прессуют из полученной смеси при давлении 10-30 кН / см 2 (1-3 т / см 2) и выжигают при температуре 1200-1400 ° С. Готовые магнитопроводы серо-черного цвета имеют высокую твердость, но довольно хрупкие. Обмотки обычно наматывают без непосредственно на ферритовые магнитопроводы без дополнительной изоляции последних. Удельный электрическое сопротивление ферритов в миллионы раз больше чем у металлических ферромагнетиков, что практически устраняет вихревые токи. Это позволяет перемагничиные ферриты с частотой в сотни килогерц и обеспечивать высокую скорость выполнения операций современных управляющих и вычислительных машин. Наиболее распространенные магниево-марганцевые ферриты марок ВТ (1.3ВТ, 0,16 ВТ и др.).. Они имеют относительно низкую точку Кюри (140 — 300 ° С), что обусловливает значительную изменение их магнитных параметров при нагревании. Ферриты на базе лития, с точкой Кюри 630 ° С, имеют значительно лучшие температурные характеристики. Для магнитопроводов цифровых устройств широко применяют бифериты, есть ферриты с двумя металлами, например магниево-марганцевые или литий-натриевые ферриты, а также полифериты, которые являются твердыми растворами трех и более ферритов.
Магнитно-твердые материалы. Магнитно-твердые материалы, как уже отмечалось, применяют:
— Для изготовления постоянных магнитов;
— Для записи информации (например, для звукозаписи).
При оценке свойств магнитно-твердых материалов могут оказаться существенными механические свойства (прочность), обрабатываемость материала в процессе производства, а также плотность, удельное электрическое сопротивление, стоимость и др.. Особенно важно в некоторых случаях вопрос стабильности магнитных свойств.
Важнейшими материалами для постоянных магнитов являются сплавы Fe-Ni-Al. Большую роль в образовании высококоэрцитивной состояния этих сплавов играет механизм дисперсионного твердения.
Такие материалы имеют большое значение коэрцитивной силы, потому что их намагничивания происходит в основном за счет процессов вращения.[adsense_id=»1″]
Сплавы Fe-Ni-Al без легирующих элементов не применяют из-за их сравнительно низкие магнитные свойства. Наиболее распространенными являются сплавы, легированные медью и кобальтом. Висококобальтови сплавы, содержащие более 15% Co, как правило, используют с магнитной или с магнитной и кристаллической текстурой.
Магнитная текстура является результатом термомагнитного обработки, которая заключается в охлаждении в магнитном поле напряженностью 160-280 кА / м сплава от высоких температур (1250-1300 0 С) до примерно 500 0 С. При этом рост магнитных характеристик происходит только в направлении действия поля, т.е. материал становится магнитно-анизотропными.
Дальнейшее существенное повышение магнитных свойств сплавов Fe-Ni-Al-(Co) возможно созданием магнитов из макроструктурой в виде столбчатых кристаллов. Кристаллическую структуру получают в процессе особых условий охлаждения сплава.
Приведем краткие рекомендации по выбору марок сплавов. Безкобальтови сплавы (ЮНД и др.). Есть дешевые, их свойства относительно низкие. Сплавы ЮНДК15 и ЮНДК18 применяют, когда требуются относительно высокие магнитные свойства и материал не должен иметь магнитную анизотропию. Сплавы, содержащие 24% Со (ЮН13ДК24 и др.)., Имеют высокие магнитные свойства в направлении магнитной текстуры, хорошо технологически освоены и имеют широкое применение.
Сплавы с направленной кристаллизацией, например ЮН13ДК25БА, и др.., Имеющих наибольшую W max и, следовательно, могут обеспечить наименьшие массу и габариты магнитных систем.
В тех случаях, когда система разомкнутая, применяют сплавы с наиболее высокой Н с, например титанистий сплав ЮНДК35Т5.
Сплавы с монокристалевой структурой (ЮНДК35Т5АА и ЮНДК40Т8АА) по сравнению со сплавами с направленной кристаллизацией имеют следующие преимущества: более высокие магнитные свойства за счет дальнейшего совершенствования структуры, наличие трех взаимно перпендикулярных направлений, в которых свойства оптимальны; лучшие механические свойства.
Основные недостатки сплавов Fe-Ni-Al-(Co) — плохие механические свойства (высокие твердость и хрупкость), что значительно усложняет их механическую обработку.
Магниты из порошков. Магниты, которые получают методами порошковой металлургии, можно разделить на металлокерамические, металопластични и оксидные.
Для первых двух групп физические процессы образования высококоэрцитивной состояния зависят от тех же причин, что и для монолитных магнитов, для двух других групп необходимым условием получения высококоэрцитивной свойств является измельченный до определенной степени дисперсии состояние, которому соответствует однодоменна структура.
Металлокерамические магниты получают из металлических порошков прессованием их без материала, что их связывает, и спеканием при высокой температуре. По магнитным свойствам они лишь немного уступают литым магнитам, но дороже остальных.
Металопластичные магниты производят, как металлокерамические, из металлических порошков, но прессуют их вместе с изолирующей связкой и подвергают нагреву до невысокой температуры, необходимой для полимеризации вещества, что их связывает. По сравнению с отлитыми магнитами они снижены магнитные свойства, но имеют большой электрическое сопротивление, малый плотностью и относительно дешевы.
Среди окислительных магнитов практическое значение имеют магниты на основе ферритов бария и кобальта.
Бариевые магниты. Промышленность выпускает две группы бариевых магнитов: изотропные (БИ) и анизотропные (БА).
Бариевые магниты по сравнению с отлитыми имеют очень большую коэрцитивная силу и малый остаточную индукцию. Удельное электрическое сопротивление r бариевых магнитов в миллионы раз выше, чем r металлических материалов, что позволяет использовать бариевые магниты в магнитных цепях, которые подвергаются воздействию полей высокой частоты. Бариевые магниты не содержат дефицитных и дорогих материалов, они примерно в 10 раз дешевле чем магниты с ЮНДК24.
К недостаткам бариевых магнитов следует отнести плохие механические свойства (высокие хрупкость и твердость) и, самое главное, большую зависимость магнитных свойств от температуры. Температурный коэффициент остаточной магнитной индукции ТК В r бариевых магнитов примерно в 10 раз больше, чем ТК B r литых магнитов. Кроме того, бариевые магниты имеют необратимость свойств при охлаждении, т.е. имеют более высокую температурную стабильность, чем бариевые. Однако и они имеют температурный гистерезис, но он появляется не в области отрицательных температур, как в бариевых магнитов, а при положительных температурах (при нагревании свыше 80 ° С).
Другие материалы для постоянных магнитов.
Мартенситные стали. Мартенсит называют вид микроструктуры стали, получаемой при ее закалке. Образование мартенсита сопровождается значительными объемными изменениями, созданием большого внутреннего напряжения решетки и возникновением больших значений коэрцитивной силы.
Мартенситные стали начали применять для изготовления постоянных магнитов раньше других материалов. В данное время их используют сравнительно мало из-за низких магнитные свойства. Однако полностью от них еще не отказались, потому что они недороги и допускают механическую обработку на металлорежущих станках.
Сплавы, пластически деформируются. Эти сплавы обладают высокими в отношении механической обработки свойства. Они хорошо штампуются, режутся ножницами, обрабатываются на металлорежущих станках. Из сплавов, пластически деформируются, можно изготовить ленты, пластины, листы, проволока. В отдельных случаях (при изготовлении мелких магнитов сложной конфигурации) целесообразно применение металлокерамической технологии. Марок сплавов, пластически деформируются много, и физические процессы, благодаря которым они имеют высокие магнитные свойства, разнообразны. Наиболее распространенные сплавы кунифе (Cu-Ni-Fe) и викалой (Co-V). Сплавы кунифе анизотропные, намагничиваются в направлении прокатки, часто применяются в виде проволоки малых толщин, а также штамповки. Викалой применяют для изготовления мельчайших магнитов сложной или ажурной конфигурации и как высокопрочные магнитные ленты или проволока.
Сплавы на основе благородных металлов. К ним относятся сплавы серебра с марганцем и алюминием (сильманал) и сплавы платины с железом (77,8% Pt; 22,2% Fe) или платины с кобальтом (76,7% Pt; 23,3 % Со). Материалы этой группы, особенно те, которые содержат платину, очень дорогие, поэтому их применяют только для сверхминиатюрных магнитов массой в несколько миллиграммов. При изготовлении магнитов из всех сплавов этой группы широко используют металлокерамическую технологию.
Эластичные магниты. Как отмечалось, важнейшим недостатком основных групп материалов для постоянных магнитов — литых сплавов и магнитотвердых ферритов — является их плохие механические свойства (высокие твердость и хрупкость). Применение же сплавов, пластически деформируются ограничено их высокой стоимостью. В последнее время появились магниты на резиновой основе. Они могут быть любой формы, что позволяет технология резины — в виде шнуров, длинных полос, листов и т.п. Такой материал легко режется ножницами, штампуется, сгибается, скручивается. Известно применение «магнитной резины» как писем магнитной памяти для вычислительных машин, магнитов для систем отклонения в телевидении, магнитов, корректируют, и др..
Эластичные магниты изготавливаются из резины и мелкого порошка магнитотвердых материалов (наполнитель). В качестве наполнителя чаще всего используют феррит бария.
Материалы для магнитных лент. Под магнитными лентами понимают носители магнитной записи информации. Наибольшее распространение имеют сплошные металлические ленты из нержавеющей стали, биметаллические ленты и ленты на пластмассовой основе с порошковым рабочим слоем. Сплошные металлические ленты используют, главным образом, в специальных целях и при работе в широком температурном диапазоне; ленты на пластмассовой основе имеют более широкое применение. Основное назначение носителя магнитной записи состоит в создании на поверхности воспроизведенной головки магнитного поля, напряженность которого меняется (при протяжке ленты) во времени так же, как и сигнал, что записывается. Свойства лент с покрытием магнитными порошками существенно зависят не только от свойств исходных материалов, но и от степени измельчения частиц, объемной плотности магнитного материала в рабочем слое, ориентации частиц при наличии у них анизотропии формы и т.п.
Рабочий слой (или толщина металлической ленты) должен быть как можно тоньше, а сама лента — гладкой и гибкой для обеспечения максимального взаимодействия (магнитного контакта) между магнитными материалами ленты и головки. Остаточная намагниченность материала должна быть возможно более высокой.
К коэрцитивной силы предъявляют противоречивые требования: для уменьшения саморозмагничування необходимо по возможности более высокое значение Н с (не менее 24 кА / м), а для облегчения процесса стирания записи желательна малая Н с. Требования высокой остаточной намагниченности и минимальной чувствительности к саморозмагничування наилучшим образом удовлетворяются при прямоугольной форме участка розмагничувальнои петли гистерезиса, т.е. желательно иметь максимальное значение коэффициента выпуклости. Температурные и другие изменения магнитных свойств материала ленты должны быть наименьшими.
Промышленность выпускает магнитофонные ленты из сплава, не ржавеет, ЭП-31А и биметалла ЕП-352/353. Ленты имеют толщину 0,005-0,01 мм, Н с = 24 — 40 кА / м; В r = 0,08 Тл.
Отечественные ленты на пластмассовой основе изготавливают преимущественно типов А2601-6 (тип 6 — для студийных магнитофонов) и А4402 — 6 (тип 10 — для бытовых и репортажных). В соответствии ГОСТу в обозначениях лент используют следующее: первый элемент — буквенный индекс означает назначение ленты: А — звукозапись, Т — видеозапись, В — вычислительная техника, И — точный запись: второй элемент — цифровой индекс (от 0 до 9), обозначает материал основы: 2 — диацетилцелюлоза, 3 — триацетилцелюлоза, 4 — полиетилентерефталаг (лавсан), третий элемент — цифровой индекс (от 0 до 9), означает толщину ленты: 2 — 18 мкм, 3 — 27 мкм, 4 — 36 мкм, 6 — 55 мкм, 9 — более 100 мкм, четвертый элемент — цифровой индекс (от 01 до 99), означает номер технологической разработки; пятый элемент — числовое значение номинальной ширины ленты в миллиметрах. После пятого элемента должен быть дополнительный буквенный индекс: П — для перфорированных лент; Р — для лент, используемых в радиовещании Б — для лент с бытовых магнитофонов.
В качестве материалов для магнитных порошков находят применение: феррит железа (магнетит), феррит кобальта, двуокись хрома и др.. Каждый из них имеет свои преимущества и недостатки. Наибольшее применение получил гамма-окись железа (g-Fe 2 O 3) игольчатой формы с длиной частиц около 0,4 мкм и отношением длины к диаметру, приблизительно равным трем. Получается порошок (g-Fe 2 O 3) за счет окисления магнетита (феррита железа) FeО × Fe 2 O 3 нагреванием его на воздухе при температуре около 150 о С.
Изготовление магнитных лент может быть разнообразным. Чаще рабочий слой (магнитный лак) наносят на готовую основу, например, поливом лака из фильеры. Магнитный лак готовится заранее и состоит из магнитного порошка, связующего, растворителя, пластификатора и различных добавок, способствующих смачиванию и разделения частиц порошка и уменьшению абразивности рабочего слоя.
При использовании порошков с анизотропией формы частиц (например, игольчатых g-Fe) в процессе производства ленты доли ориентируются определенным образом в результате воздействия на них магнитного поля. Окончательное обработки ленты состоит в каландрирования и полировке для улучшения качества ее поверхности.
Лента типа 6 обеспечивает высокое качество записи и воспроизведения звука при использовании в профессиональной аппаратуре на скорости 19,05 см / с и в бытовых магнитофонах на скорости 9,53 и 4,75 см / с.[adsense_id=»1″]
Ленты необходимо хранить при температуре 10-25 ° С и относительной влажности воздуха 50-60%; недопустима температура выше 30 ° С, температура ниже 10 ° С не рекомендуется.
Помимо типов 6 и 10 отечественная промышленность производит и другие типы лент, например ленту Т4402-50 шириной 50,8 мм для поперечно-строчной записи черно-белого изображения.
Сплавы на основе редкоземельных металлов (РЗМ). Ряд соединений и сплавов с РЗМ имеет очень высокие значения коэрцитивной силы и максимальной удельной энергии. Из этой группы материалов наиболее интересные интерметаллических соединения типа RСо 5, где R — редкоземельный металл.
Кроме рассмотренных основных групп магнитных материалов в технике используют и некоторые другие, которые имеют ограниченную область применения.
Термомагнитные материалы. Термомагнитными называют материалы с существенной зависимостью магнитной индукции (точнее, намагниченности насыщения, потому что обычно термомагнитный материал работает в режиме насыщения) от температуры в определенном интервале (в большинстве случаев +60 ¸ -60 0 С). Термомагнитные материалы используют, главным образом, как магнитные шунты или дополнительные опоры. Включение таких элементов в магнитные цепи позволяет осуществить компенсацию температурной погрешности или обеспечить изменение магнитной индукции в воздушном зазоре по заданному закону (терморегулирования).
Магнитострикционные материалы. Магнитострикции имеет непосредственное техническое применение в магнитострикционных вибраторах (генераторах) звуковых и ультразвуковых колебаний, а также в некоторых радиотехнических схемах и устройствах (вместо кварца для стабилизации частоты, в электромеханических фильтрах и т.д.).
В качестве магнитострикционных материалов применяют никель, пермендюр (сплавы Fe-Co, отличающиеся высокой намагниченностью насыщения), Альфер (сплавы Fe-Al), никелевый и никелькобальтовий ферриты и др..
Никель имеет большое абсолютное значение коэффициента магнитострикции насыщения l S = D l / l = -35 × 10 -6 (l — длина пластины к воздействию поля, D l — изменение длины в результате воздействия поля; знак минус означает уменьшение длины). Обычно применяют никель марки Н толщиной 0,1 мм в виде жесткой необожженной ленты. После вырубки пластины оксидируют нагреванием на воздухе до 800 о С в течении 15-25 мин. Образованная таким образом оксидная пленка служит для электрической изоляции пластин при составлении пакета. Никель имеет высокие антикоррозийные свойства и малый температурный коэффициент модуля упругости.
В последнее время более широко применяют магнитострикционные ферриты, особенно в прецизионных фильтрах.
Сплавы с высокой индукцией насыщения. Из обычных материалов наивысшую индукцию имеет железо (»2,1 Тл).
В тех случаях, когда выдвигаются наиболее высокие требования к габаритам устройства, его массы и размера потока, применяют зализокобальтови сплавы, в которых индукция насыщения достигает 2,43 Тл, что позволяет получить экономию в массе и объеме по сравнению с железом на 15 — 20%. На практике используют сплавы, содержащие 30-51% Со и 1,5-2,0% V, улучшает технологические свойства сплавов, возможность обработки их в холодном состоянии. Эти сплавы называют пермендюр.
Индукция насыщения сплавов с большим и малым содержанием кобальта примерно одинакова. Висококобальтови сплавы в слабых и средних полях имеют большие значения магнитной проницаемости, чем низькокобальтови, однако последние дешевле.[adsense_id=»1″]
Кроме большого значения индукции насыщения пермендюр имеет значительную обратимую проницаемость, что делает его особенно ценным как материал для телефонных мембран. Недостатки пермендюр: малый удельное электрическое сопротивление r, высокая стоимость и дефицитность кобальта и ванадия. Пермендюр применяют в постоянных магнитных полях или в слабых переменных полях с сильным подмагничиванием постоянным полем. Из материалов этой группы нормированный сплав 50 КФ (49,0-51% Со; 1,5-2,0% V). Сплав имеет индукцию насыщения не менее 2,35 Тл и q = 980 ° С.
Преимущество зализокобальтових сплавов перед технически чистым железом ощущается при магнитной индукции выше 1,0 Тл. Различие в значениях магнитной проницаемости достигает максимума при значении магнитной индукции около 1,8 Тл, при этом проницаемость кобальтовых сплавов больше проницаемости мягких сортов железа в десятки раз.
Васюра А.С. — Книга «Элементы и устройства систем управления автоматики»
Понравилось это:
Нравится
Похожее
Диамагнетизм
Диамагнетизм проявляется во всех материалах и представляет собой тенденцию материала противостоять приложенному магнитному полю и, следовательно, отталкиваться от магнитного поля. Однако в материале с парамагнитными свойствами (то есть с тенденцией усиливать внешнее магнитное поле) доминирует парамагнитное поведение. Таким образом, несмотря на универсальное возникновение, диамагнитное поведение наблюдается только в чисто диамагнитном материале. В диамагнитном материале нет неспаренных электронов, поэтому собственные магнитные моменты электронов не могут создавать какого-либо объемного эффекта.
Обратите внимание, что это описание подразумевается только как эвристический вариант. Теорема Бора-Ван Леувена показывает, что диамагнетизм невозможен в соответствии с классической физикой, и что правильное понимание требует квантово-механического описания.
Обратите внимание, что все материалы проходят этот орбитальный ответ. Однако в парамагнитных и ферромагнитных веществах диамагнитный эффект подавляется гораздо более сильными эффектами, вызванными неспаренными электронами.
В парамагнитном материале есть неспаренные электроны; то есть атомные или молекулярные орбитали с ровно одним электроном в них. В то время как для принципа исключения Паули требуется, чтобы спаренные электроны имели свои собственные («спиновые») магнитные моменты, указывающие в противоположных направлениях, в результате чего их магнитные поля компенсируются, неспаренный электрон может выровнять свой магнитный момент в любом направлении. Когда приложено внешнее поле, эти моменты будут стремиться совмещаться в том же направлении, что и приложенное поле, усиливая его.
Понятие о гистерезисе. Постоянный магнетизм
Ферромагнитные и ферримагнитные материалы обладают свойством остаточной намагниченности. Это свойство обусловлено явлением гистерезиса – запаздывания. Суть его состоит в отставании изменения намагниченности материала от изменения внешнего поля. Если по достижении насыщения снижать напряженность поля, намагниченность будет меняться не в соответствии с кривой намагничивания, а более пологим образом, так как значительная часть доменов остается ориентирована соответственно вектору поля. Благодаря этому явлению существуют постоянные магниты.
Размагничивание происходит при перемене направления поля, при достижении им некоторой величины, называемой коэрцитивной (задерживающей) силой. Чем больше ее величина, тем лучше вещество удерживает остаточную намагниченность. Замыкание петли гистерезиса происходит при следующем изменении напряженности по направлению и величине.
Ферромагнетики
Ферромагнетик, как парамагнитное вещество, имеет неспаренные электроны. Однако, в дополнение к тенденции собственного магнитного момента электронов быть параллельной приложенному полю, в этих материалах также существует тенденция для этих магнитных моментов ориентироваться параллельно друг другу, чтобы поддерживать состояние пониженной энергии. Таким образом, даже в отсутствие приложенного поля магнитные моменты электронов в материале спонтанно выстраиваются параллельно друг другу.
Каждое ферромагнитное вещество имеет свою индивидуальную температуру, называемую температурой Кюри, или точкой Кюри, выше которой оно теряет свои ферромагнитные свойства. Это связано с тем, что тепловая тенденция к беспорядку подавляет снижение энергии из-за ферромагнитного порядка.
Вам будет интересно:Топ-10 самых правильных переводчиков
Ферромагнетизм встречается только в нескольких веществах; распространенными являются железо, никель, кобальт, их сплавы и некоторые сплавы редкоземельных металлов.
Магнитные моменты атомов в ферромагнитном материале заставляют их вести себя как крошечные постоянные магниты. Они слипаются и объединяются в небольшие области более или менее равномерного выравнивания, называемые магнитными доменами или доменами Вейсса. Магнитные домены можно наблюдать с помощью магнитно-силового микроскопа, чтобы выявить границы магнитных доменов, которые напоминают белые линии на эскизе. Есть много научных экспериментов, которые могут физически показать магнитные поля.
Парамагнетики
Принадлежащим к данной группе веществам свойственна положительная магнитная восприимчивость (очень невысокая, порядка 10-5 – 10-6). Намагничиваются они параллельно вектору накладываемого поля, то есть втягиваются в него, но взаимодействие парамагнетиков с ним очень слабое, как и у диамагнетиков. Магнитная проницаемость их близка к значению проницаемости вакуума, только слегка превосходит его.
В отсутствие внешнего поля парамагнетики, как правило, не обладают намагниченностью: их атомы имеют собственные магнитные моменты, но ориентированы они хаотически из-за тепловых колебаний. При низких температурах парамагнетики могут иметь собственную намагниченность малой величины, сильно зависящую от внешних воздействий. Однако влияние теплового движения слишком велико, вследствие чего элементарные магнитные моменты парамагнетиков никогда не устанавливаются точно по направлению поля. В этом и заключается причина их низкой магнитной восприимчивости.
Силы межатомного и межмолекулярного взаимодействия также играют значительную роль, способствуя либо, напротив, оказывая сопротивление упорядочиванию элементарных магнитных моментов. Это обусловливает большое разнообразие магнитных свойств вещества парамагнетиков.
К этой группе веществ относятся многие металлы, например вольфрам, алюминий, марганец, натрий, магний. Парамагнетиками являются кислород, соли железа, некоторые оксиды.
Роль доменов
Когда домен содержит слишком много молекул, он становится нестабильным и делится на два домена, выровненных в противоположных направлениях, чтобы они более стабильно слипались, как показано справа.
При воздействии магнитного поля границы доменов перемещаются, так что домены, выровненные по магнитному полю, растут и доминируют в структуре (пунктирная желтая область), как показано слева. Когда намагничивающее поле удалено, домены могут не вернуться в ненамагниченное состояние. Это приводит к тому, что ферромагнитный материал намагничивается, образуя постоянный магнит.
При достаточно сильном намагничивании, чтобы преобладающий домен перекрывал все остальные, приводя к образованию только одного отдельного домена, материал магнитно насыщался. Когда намагниченный ферромагнитный материал нагревают до температуры точки Кюри, молекулы перемешиваются до такой степени, что магнитные домены теряют организацию, а магнитные свойства, которые они вызывают, прекращаются. Когда материал охлаждается, эта структура выравнивания доменов самопроизвольно возвращается, примерно аналогично тому, как жидкость может замерзнуть в кристаллическое твердое вещество.
Диамагнетики
В силу некоторых особенностей строения электронных облаков у атомов (или молекул) диамагнетиков нет магнитного момента. Он появляется при возникновении внешнего поля. Индуцированное, наведенное поле имеет противоположное направление, и результирующее поле оказывается несколько слабее, чем внешнее. Правда, разница эта не может быть существенной.
Магнитная восприимчивость диамагнетиков выражается отрицательными числами с порядком величины от 10-4 до 10-6 и не зависит от напряженности поля; магнитная проницаемость ниже, чем у вакуума, на тот же порядок величины.
Наложение неоднородного магнитного поля ведет к тому, что диамагнетик выталкивается этим полем, так как стремится сместиться в область, где поле слабее. На этой особенности магнитных свойств веществ данной группы основан эффект диамагнитной левитации.
Диамагнетики представляют обширную группу веществ. В нее входят такие металлы, как медь, цинк, золото, серебро, висмут. Также к ней относятся кремний, германий, фосфор, азот, водород, инертные газы. Из сложных веществ – вода, многие соли, органические соединения. Идеальные диамагнетики – это сверхпроводники. Магнитная проницаемость их равна нулю. Поле внутрь сверхпроводника проникнуть не может.
Антиферромагнетика
В антиферромагнетике, в отличие от ферромагнетика, собственные магнитные моменты соседних валентных электронов имеют тенденцию указывать в противоположных направлениях. Когда все атомы расположены в веществе так, что каждый сосед антипараллелен, вещество является антиферромагнитным. Антиферромагнетики имеют нулевой суммарный магнитный момент, что означает, что они не создают поля.
Антиферромагнетики встречаются реже по сравнению с другими типами поведения и чаще всего наблюдаются при низких температурах. При различных температурах антиферромагнетики проявляют диамагнитные и ферромагнитные свойства.
В некоторых материалах соседние электроны предпочитают указывать в противоположных направлениях, но нет геометрического расположения, в котором каждая пара соседей является анти-выровненной. Это называется спин-стекло и является примером геометрического разочарования.
Строение вещества и магнетизм
Первая теория, объясняющая природу магнетизма через взаимосвязь электрических и магнитных явлений, создана французским физиком Ж.-М. Ампером в 20-х годах XIX века. В рамках этой теории Ампер предположил наличие в физических телах микроскопических замкнутых токов, обычно компенсирующих друг друга. Но у веществ, обладающих магнитными свойствами, такие «молекулярные токи» создают поверхностный ток, в результате чего материал становится постоянным магнитом. Эта гипотеза не нашла подтверждения, за исключением одной важнейшей идеи – о микротоках как источниках магнитных полей.
Микротоки в веществе действительно существуют благодаря движению электронов в атомах и создают магнитный момент. Кроме того, электроны имеют собственный магнитный момент квантовой природы.
Суммарный магнитный момент вещества, то есть совокупности элементарных токов в нем, в отношении к единице объема, определяет состояние намагниченности макроскопического тела. У большей части веществ моменты частиц ориентированы неупорядоченно (ведущую роль в этом играют тепловые хаотические колебания), и намагниченность практически равна нулю.
Магнитные свойства ферромагнитных материалов
Как и ферромагнетизм, ферримагнетики сохраняют свою намагниченность в отсутствие поля. Однако, как и антиферромагнетики, соседние пары электронных спинов имеют тенденцию указывать в противоположных направлениях. Эти два свойства не противоречат друг другу, потому что в оптимальном геометрическом расположении магнитный момент от подрешетки электронов, которые указывают в одном направлении, больше, чем от подрешетки, которая указывает в противоположном направлении.
Большинство ферритов являются ферримагнитными. Магнитные свойства ферромагнитных материалов на сегодняшний день считаются неоспоримыми. Первое обнаруженное магнитное вещество, магнетит, является ферритом и первоначально считалось ферромагнетиком. Однако Луи Неэль опроверг это, открыв ферримагнетизм.
Когда ферромагнетик или ферримагнетик достаточно мал, он действует как один магнитный спин, который подвержен броуновскому движению. Его реакция на магнитное поле качественно аналогична реакции парамагнетика, но намного больше.
Еще немного об использовании магнитных материалов
Современные высокотехнологичные производства требуют применения магнитов, изготовляемых из конструкционных, в том числе композитных материалов с заданными магнитными свойствами веществ. Таковы, например, магнитные нанокомпозиты ферромагнетик-сверхпроводник или ферромагнетик-парамагнетик, используемые в спинтронике, или магнитополимеры – гели, эластомеры, латексы, феррожидкости, находящие самое широкое применение.
Различные магнитные сплавы тоже чрезвычайно востребованы. Сплав неодим-железо-бор характеризуется высокой устойчивостью к размагничиванию и мощностью: упомянутые выше неодимовые магниты, являясь наиболее мощными на сегодняшний день постоянными магнитами, применяются в самых разных отраслях, несмотря на наличие некоторых недостатков, таких как хрупкость. Их используют в магнитно-резонансных томографах, ветрогенераторах, при очистке технических жидкостей и подъеме тяжелых грузов.
Очень интересны перспективы использования антиферромагнетиков в низкотемпературных наноструктурах для изготовления ячеек памяти, позволяющих существенно увеличивать плотность записи без нарушения состояния соседних битов.
Надо полагать, что применение магнитных свойств веществ с заданными характеристиками будет все более расширяться и обеспечит серьезные технологические прорывы в разных областях.
Электромагниты
Электромагнит — это магнит, в котором магнитное поле создается электрическим током. Магнитное поле исчезает, когда ток отключается. Электромагниты обычно состоят из большого количества близко расположенных витков провода, которые создают магнитное поле. Проволочные витки часто наматываются вокруг магнитного сердечника, изготовленного из ферромагнитного или ферримагнитного материала, такого как железо; магнитный сердечник концентрирует магнитный поток и создает более мощный магнит.
Основным преимуществом электромагнита перед постоянным магнитом является то, что магнитное поле можно быстро изменить, контролируя величину электрического тока в обмотке. Однако, в отличие от постоянного магнита, который не требует питания, электромагнит требует непрерывной подачи тока для поддержания магнитного поля.
Электромагниты широко используются в качестве компонентов других электрических устройств, таких как двигатели, генераторы, реле, соленоиды, громкоговорители, жесткие диски, МРТ-аппараты, научные приборы и оборудование для магнитной сепарации. Электромагниты также используются в промышленности для захвата и перемещения тяжелых железных предметов, таких как металлолом и сталь. Электромагнетизм был открыт в 1820 году. Тогда же вышла первая классификация материалов по магнитным свойствам.
Источник
Магнитно-твердые материалы
Магнитно-твердые материалы применяются для изготовления постоянных магнитов. Эти материалы должны отвечать следующим требованиям:
- обладать большой остаточной индукцией;
- иметь большую максимальную магнитную энергию;
- обладать стабильностью магнитных свойств.
Самым дешевым материалом для постоянных магнитов является углеродистая сталь (0,4 – 1,7 % углерода, остальное – железо). Магниты, изготовленные из углеродистой стали, обладают невысокими магнитными свойствами и быстро теряют их под влиянием нагрева, ударов и сотрясений.
Легированные стали обладают лучшими магнитными свойствами и применяются для изготовления постоянных магнитов чаще, чем углеродистая сталь. К таким сталям относятся хромистая, вольфрамовая, кобальтовая и кобальто-молибденовая.
Для изготовления постоянных магнитов в технике разработаны сплавы на основе железа – никеля – алюминия. Эти сплавы отличаются высокой твердостью и хрупкостью, поэтому они могут обрабатываться только шлифованием. Сплавы обладают исключительно высокими магнитными свойствами и большой магнитной энергией в единице объема.
В таблице 1 приведены данные о составе некоторых магнитно-твердых материалов для изготовления постоянных магнитов.
Таблица 1
Химический состав магнитно-твердых материалов
Наименование материала | Химический состав в весовых процентах | Относительный вес на единицу магнитной энергии |
Углеродистая сталь Хромистая сталь Вольфрамовая сталь Кобальтовая сталь Кобальто-молибденовая сталь Альни Альниси Альнико Магнико | 0,45 C остальное Fe 2 – 3 Cr; 1 C 5 W; 1 C 5 – 30 Co; 5 – 8 Cr; 1,5 – 5 W 13 – 17 Mo; 10 – 12 Co 12,5 Al; 25 Ni; 5 Cн 14 Al; 34 Ni; 1 Si 10 Al; 17 Ni; 12 Co; 6 Cн 24 Co; 13 Si; 8 Al; 3 Cн | 26,7 17,2 15,8 5,1 – 12,6 3,8 3,6 3,4 3,1 1 |