Сфера и область применения ацетилена. Где применяется ацетилен.


Ацетилен, формула, газ, характеристики:

Ацетилен (также – этин) – органическое вещество класса алкинов, непредельный углеводород, состоящий из двух атомов углерода и двух атомов водорода.

Химическая формула ацетилена C2H2. Структурная формула ацетилена СH≡CH. Изомеров не имеет.

Строение молекулы ацетилена:

Ацетилен имеет тройную связь между атомами углерода.

Ацетилен – бесцветный газ, без вкуса и запаха. Однако технический ацетилен содержит примеси – фосфористый водород, сероводород и пр., которые придают ему резкий запах.

Легче воздуха. Плотность по сравнению с плотностью воздуха 0,9.

Очень горючий газ. Пожаро- и взрывоопасен.

Ацетилен относится к числу немногих соединений, горение и взрыв которых возможны в отсутствии кислорода или других окислителей.

Смеси ацетилена с воздухом взрывоопасны в очень широком диапазоне концентраций. Взрывоопасность уменьшается при разбавлении ацетилена другими газами, например азотом, метаном или пропаном.

Ацетилен требует большой осторожности при обращении. Может взрываться от удара, при нагреве до 500 °C или при сжатии выше 0,2 МПа при комнатной температуре. Струя ацетилена, выпущенная на открытый воздух, может загореться от малейшей искры, в том числе от разряда статического электричества с пальца руки. Для хранения ацетилена используются специальные баллоны, заполненные пористым материалом, пропитанным ацетоном. В них ацетилен хранится в виде раствора с ацетоном.

Малорастворим в воде. Очень хорошо растворяется в ацетоне. Хорошо растворяется в других органических веществах (бензине, бензоле и пр.)

Ацетилен обладает незначительным токсическим действием.

Правила безопасности

Применение ацетилена без навыков и опыта запрещено. Существует несколько правил, которые следует соблюдать при работе с веществом:

Содержание ацетилена в помещении в воздухе необходимо постоянно контролировать. Для этого следует использовать специальные автоматические приборы, которые способны оповещать о превышении концентрации газа. Этот показатель не должен быть более 0,46 %.

Области применения ацетилена совершенно разные, но чаще всего его используют при сварке. При работе с баллонами, наполненными именно этим газом, следует соблюдать осторожность. Запрещено размещать емкости вблизи открытого огня или же около отопительных систем. Помимо этого, запрещено работать с баллонами, которые находятся в горизонтальном положении, а также, если они не закреплены и неисправны.

При работе с ацетиленом следует использовать исключительно неискрящиеся инструменты, электрическое оборудование и освещение во взрывобезопасном исполнении.

Если происходит утечка ацетилена из баллона, то следует быстро закрыть вентиль емкости. Для этого можно использовать неискрящийся специальный ключ. Определить утечку можно лишь по звуку или же запаху.

Физические свойства ацетилена:

Наименование параметра:Значение:
Цветбез цвета
Запахбез запаха
Вкусбез вкуса
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.)газ
Плотность (при 20 °C и атмосферном давлении 1 атм.), кг/м31,0896
Плотность (при 0 °C и атмосферном давлении 1 атм.), кг/м31,173
Температура плавления, °C-80,8
Температура кипения, °C-80,55
Тройная точка, °C335
Температура самовоспламенения, °C335
Давление самовоспламенения, МПа0,14-0,16
Критическая температура*, °C35,94
Критическое давление, МПа6,26
Взрывоопасные концентрации смеси газа с воздухом, % объёмныхот 2,1 до 100
Удельная теплота сгорания, МДж/кг56,9
Температура пламени, °C3150-3200
Молярная масса, г/моль26,038

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Процесс сварки

Применение ацетилена при сварке должно осуществляться аккуратно и в соответствии с определенными правилами. Для начала горелку следует продуть газом. Это нужно делать до тех пор, пока не появится запах ацетилена. После этого газ поджигается. При этом следует добавлять кислород, пока пламя не станет более устойчивым. Из редуктора на выходе давление ацетилена должно быть от 2 до 4 атмосфер, а кислорода – от 2 атмосфер.

Для сварки черных металлов требуется нейтральное пламя. Оно обладает четко очерченной короной и условно его можно разделить на три яркие части: ядро – ярко-голубой окрас с зеленоватым отливом, восстановленное пламя – бледно-голубого оттенка, факел пламени. Последние две зоны являются рабочими.

Перед началом работы все детали нужно очистить, а затем подогнать друг к другу. При работе с горелкой также применяют левый и правый способ. В последнем случае происходит медленное остывание шва. Присадочный материал, как правило, перемещается за горелкой. При левом способе повышается эластичность и прочность шва. В данном случае пламя направляется от места сварки. Присадочный материал следует вносить в сварочную ванну только после того, как переместится на следующую позицию горелка.

Химические свойства ацетилена:

Химические свойства ацетилена аналогичны свойствам других представителей ряда алкинов. Поэтому для него характерны следующие химические реакции:

  1. 1. галогенирование ацетилена:

СH≡CH + Br2 → CHBr=CHBr (1,2-дибромэтен);

CHBr=CHBr + Br2 → CHBr2-CHBr2 (1,1,2,2-тетрабромэтан).

Реакция протекает стадийно с образованием производных алканов.

В ходе данной реакции ацетилен обесцвечивает бромную воду.

  1. 2. гидрогалогенирование ацетилена:

СH≡CH + HBr → CH2=CHBr (бромэтен).

  1. 3. гидратация ацетилена (реакция Михаила Григорьевича Кучерова, 1881 г.):

CH≡CH + H2O → [CH2=CH-OH] (енол) → CH3-CH=O (уксусный альдегид ) (kat = HgSO4, Hg(NO3)2).

  1. 4. тримеризация ацетилена (реакция Николая Дмитриевича Зелинского, 1927 г.):

3СH≡CH → C6H6(бензол) (kat = активированный уголь, to = 450-500 оС).

Реакция тримеризации ацетилена является частным случаем реакции полимеризации ацетилена и происходит при пропускании ацетилена над активированным углем при температуре 450-500 оС.

  1. 5. димеризация ацетилена:

СH≡CH + СH≡CH → CH2=CH-С≡CH (винилацетилен) (kat = водный раствор CuCl и NH4Cl).

Реакция димеризации ацетилена является частным случаем реакции полимеризации ацетилена.

  1. 6. горение ацетилена:

2СH≡CH + 5О2 → 4CО2 + 2H2О.

Ацетилен горит белым ярким пламенем.

  1. 7. окисление ацетилена.

Протекание реакции и её продукты определяются средой, в которой она протекает.

  1. 8. восстановления ацетилена:

СH≡CH + Н2 → C2H4 (этилен) (kat = Ni, Pd или Pt, повышенная to);

СH≡CH + 2Н2 → C2H6 (этан) (kat = Ni, Pd или Pt, повышенная to).

Что делать, если возник пожар

Неправильное применение ацетилена может привести к печальным последствиям. Этот газ взрывается и приносит сильное разрушение. Что же делать, если возник пожар?

При возникновении пожара следует незамедлительно убрать из опасной зоны все емкости, наполненные ацетиленом. Те баллоны, которые остались, следует постоянно охлаждать обычной водой или же специальным составом. Емкости должны полностью остыть.

Если воспламенился газ, который выходит из баллона, то следует незамедлительно закрыть емкость. Для этого следует использовать неискрящийся ключ. После этого емкость необходимо остудить.

При сильном возгорании тушение огня следует осуществлять только с безопасного расстояния. В такой ситуации стоит использовать огнетушители, наполненные составом, содержащим флегматизирующую концентрацию азота 70 % по объему, также диоксид углерода 75 % по объему, песок, струи воды, сжатый азот, полотно асбестовое и так далее.

Применение и использование ацетилена:

– как сырье в химической промышленности для производства уксусной кислоты, этилового спирта, растворителей, пластических масс, синтетических каучуков, ароматических углеводородов,

– для газовой сварки и резки металлов,

– для получения технического углерода,

– как источник очень яркого, белого света в автономных светильниках, где он получается реакцией карбида кальция и воды.

Получение

В лаборатории

В лаборатории ацетилен получают действием воды на карбид кальция см. видео данного процесса (Ф. Вёлер, 1862 г.),

а также при дегидрировании двух молекул метана при температуре свыше 1400 °C:

В промышленности

В промышленности ацетилен получают из карбида кальция и пиролизом углеводородного сырья – метана или пропана с бутаном. В последнем случае ацетилен получают совместно с этиленом. Карбидный метод позволяет получать чистый ацетилен, но требует высокого расхода электроэнергии. Пиролиз менее энергозатратен, но образующийся ацетилен имеет низкую концентрацию в газовом потоке и требует выделения. Экономические оценки обоих методов многочисленны, но противоречивы .

Получение пиролизом

Метан превращают в ацетилен и водород в электродуговых печах (температура 2000-3000°С, напряжение между электродами 1000 В). Метан при этом разогревается до 1600°С. Расход электроэнергии составляет около 13000 кВт*ч на 1 тонну ацетилена, что относительно много (примерно равно затрачиваемой энергии по карбидному методу) и потому является недостатком процесса. Выход ацетилена составляет 50%.

Иное название – Вульф-процесс. Сначала разогревают насадку печи путем сжигания метана при 1350-1400°С. Далее через разогретую насадку пропускают метан. Время пребывания метана в зоне реакции очень мало и составляет доли секунды. Процесс реализован в промышленности, но экономически оказался не таким перспективным как считалось на стадии проектирования.

Метан смешивают с кислородом. Часть сырья сжигают, а образующееся тепло расходуют на нагрев остатка сырья до 1600°С. Выход ацетилена составляет 30-32%. Метод имеет преимущества – непрерывный характер процесса и низкие энергозатраты. Кроме того, с ацетиленом образуется еще и синтез-газ. Этот процесс (Заксе-процесс или BASF-процесс) получил наиболее широкое внедрение.

Является разновидностью окислительного пиролиза. Часть сырья сжигают с кислородом в топке печи, газ нагревается до 2000°С. Затем в среднюю часть печи вводят остаток сырья, предварительно нагретый до 600°С. Образуется ацетилен. Метод характеризуется большей безопасностью и надежностью работы печи.

Пиролиз в струе низкотемпературной плазмы

Процесс разрабатывается с 1970-х годов, но, несмотря на перспективность, пока не внедрен в промышленности. Сущность процесса состоит в нагреве метана ионизированным газом. Преимущество метода заключается в относительно низких энергозатратах (5000-7000 кВт*ч) и высоких выходах ацетилена (87% в аргоновой плазме и 73% в водородной).

Карбидный метод

Этот способ известен с 19 века, но не потерял своего значения и до настоящего времени. Сначала получают карбид кальция, сплавляя оксид кальция и кокс в электропечах при 2500-3000°С:

Известь получают из карбоната кальция:

Далее карбид кальция обрабатывают водой:

Получаемый ацетилен имеет высокую степень чистоты 99,9%. Основным недостатком процесса является высокий расход электроэнергии: 10000-11000 кВт*ч на 1 тонну ацетилена.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]