Производство проволоки: перечень оборудования, описание технологии изготовления 1


Оборудование для производства проволоки + видео

Станы для мокрого волочения, как правило, работают по технологии скольжения, и могут совмещаться со станами сухого волочения любой кратности. Их оборудуют независимыми синхронизированными электродвигателями в разных модификациях.

Также широко применяются прямоточные станы для сухого волочения, которые отличаются наиболее современной конструкцией. Преимущественно используется такие станы для производства проволоки небольшого диаметра из высоко-, низкоуглеродистой и нержавеющей стали. Главные отличительные черты стана – это компактность, отсутствие ремней и шкивов между приводами и барабанами, бесшумность работы, отсутствие вибраций. Конструкционный дизайн является главной особенностью таких станов. Благодаря прочности и устойчивости рамы, стан можно полностью транспортировать, отсюда минимум временных затрат на установку и прокладку кабелей.

Прямоточные станы сухого волочения отличаются горизонтальным расположением барабанов. Такие станы, как правило, используются для производства проволоки из низко-, высокоуглеродистых сталей, а также из нержавеющих сталей. Преимущества такого оборудования – высокая надежность, эргономичность и простота в эксплуатации конструкции, которая при монтаже не требует специального фундамента. Также в установке применена высокоэффективная система охлаждения барабанов и предлагается опциональное оборудование.

Разнообразные размоточные устройства для катанки также пригодятся для производства проволоки.

Видео как делают катанку из меди:

Также в сфере производства широко применяются крутильные машины сигарного типа, машины двойной скрутки и бугельного типа.

Характеристики изделия

Прежде всего стальная проволока должна соответствовать следующим нормам ГОСТа:

  • При производстве применяется только низкоуглеродная сталь;
  • Варианты диаметра сечения: в пределах 10 мм для сортов, не имеющих покрытия, и до 6 мм для сортов с покрытием. Готовое изделие, не обработанное термически, обязано выдерживать не менее четырех сгибов без повреждения целостности;
  • В отличие от темной проволоки, производство стальной не допускает погрешностей: трещин, закатов и окалины. Допустимы небольшие царапины или эффект рябизны, пятен без оцинковки, однако это не должно отражаться на качестве в целом.
  • Стальная проволока производится в катушках (допустимо наматывание трех отдельных отрезков) или мотках (допустим лишь один отрезок).

Свойства

Главным достоинством медной проволоки является ее малое удельное сопротивление. Именно поэтому она активно применяется в электроэнергетике и конструкциях различных электроприборов. Получение проводов существенно облегчает высокая пластичность металла. Качественную медь несложно обрабатывать в режиме высокой точности. Формулу сплава подбирают в различных случаях индивидуально, отталкиваясь от того, какие целевые свойства должны быть достигнуты. Температура плавления чистой меди составляет 1083 градуса по Цельсию или же 1356 градусов по Кельвину. А плотность этого металла составляет 2,07 г на 1 см3. Потому просчитать массу по сечению несложно:

  • при толщине 1,5 кв. мм. – 0,0133 кг на 1 м3;
  • при сечении 4 кв. мм. – 0,035 кг на 1 м3;
  • при сечении 6 кв. мм. – 0,053 кг на 1 м3.

Этапы производственного процесса

Производство стальной проволоки ведется методом волочения металла на специальном устройстве и следующим за этим процессом обжига либо без такового. Шаги производственного процесса:

  • Травление (снятие окалины). Поверхность проволоки обезжиривается, шлифуется и полируется;
  • Обработка высокими температурами, в результате которого изделие становится более мягким;
  • Расплющивание и выравнивание специальным молотом;
  • Волочение на специальном устройстве, представляющее собой вытягивание на максимальных скоростях.;
  • Обжигание.

Различаются две разновидности обжига:

  • Светлый с использованием инертного газа, в результате которого исключаются окисление изделия и окалина;
  • Черный, при котором на поверхности проволоки присутствует окалина.

Волочение проволоки

Для производства на заводах используется специальная технология литья, которая позволяет получить медную проволоку с диаметром сечения порядка 20-30 миллиметров. Этот показатель является достаточно высоким, поскольку такая толстая проволока обладает массой недостатков — большой удельный вес, высокое удельное сопротивление материала и так далее.

Поэтому после литья также используется волочение. Эта технология позволяет снизить диаметр изделия до нужных показателей (от 1-2 микрометров при сверхтонком волочении до 10 миллиметров при грубом волочении). Сама технология волочения является достаточно простой: толстая проволока пропускается сквозь специальные отверстия (фильеры), диаметр которых меньше диаметра исходной проволоки.

Технология

Для волочения необходимы специальные волочильные станки, а также соблюдение определенного порядка действий.

  1. Непосредственно перед волочением исходная проволока должна пройти процедуру травления. Для этого обычно используется раствор соляной кислоты, который нагревается до невысоких температур (40-50 градусов по шкале Цельсия). После травления также рекомендуется выполнить отжиг металлической заготовки — так металл станет мелкозернистым, что позволит выполнить более качественное волочение. После отжига необходимо нейтрализовать остатки травильной кислоты и сделать промывку. Травление и отжиг позволяют значительно повысить срок годности волочильных станков — если этого не сделать, то волочильные отверстия-фильеры достаточно быстро забьются окалиной, что замедлит производственный процесс.
  2. Теперь можно приступать непосредственно к волочению. Для этого концы исходной проволоки заостряют с помощью ковочных инструментов, а потом проволока вставляется в специальные отверстия-фильеры. После этого осуществляется запуск двигателя волочильного станка. Чтобы получить тонкую или сверхтонкую проволоку малого сечения, она последовательно пропускается через несколько фильеров.
  3. На последнем этапе обработки проволока становится достаточно жесткой и пружинистой. Чтобы избавиться от этого недостатка в последнем отсеке волочильного станка происходит финальный отжиг материала. В конце проводят сушку в специальных шкафах-отсеках — после этого осуществляется намотка на катушки. Волочение завершено — катушки с проволокой теперь можно поместить на склад, доставить заказчику с помощью автотранспорта.

Автоматизация

Процедура волочения является полуавтоматизированной — оператор лишь выполняет подготовку и заправку исходной проволоки, а непосредственно волочение станок выполняет сам в автоматическом режиме (хотя оператор может контролировать параметры процедуры с помощью панели управления).

В ряде случаев перед волочением могут наноситься специальные смазочные материалы — это могут быть жирные масла, ингибиторы-эмульсии, растворы щелочных солей и так далее. Целью нанесения смазки является снижения трения во время волочения — это позволяет получить более тонкую и однородную проволоку + за счет нанесения смазки минимизируется риск образования разрывов.

Сварка медной проволокой

Применяется для сварки изделий и листов на основе медных или латунных сплавов. Медная проволока в данном случае используется в качестве субстрата, из которого будет формироваться сварной шов. Рассмотрим критические моменты основных способов сварки:

Газовая сварка

Для проведения газовой сварки меди рекомендуется использовать флюсовые растворы на основе бора для оперативного удаления оксидов, чтобы улучшить качество шва и минимизировать образование пузырьков воздуха внутри сварного шва.

Нужно следить за расходом газа в зависимости от толщины сплава. Если толщина объекта составляет менее 1 см, то расход газа будет 150-160 л/час. Если же толщина объекта будет более 1 см, то расход будет порядка 200-250 л.

Сварку рекомендуется проводить быстрыми, но точными движениями. Распавку нужно делать так: сперва расплавляется присадочная проволока — потом расплавляются края медных объектов.

Сварка полуавтоматом

Сварку полуавтоматом рекомендуется делать во флюсовой среде для минимизации риска образования пузырьков воздуха. Оптимальная проволока для проведения сварки — M2, хотя можно также использовать марки M1 и M3.

Для сварки полуавтоматом рекомендуется использовать напряжение 30 вольт, а силу тока — 300 ампер. Сварку рекомендуется делать поперечными движениями, но без резких колебаний. Иначе могут образоваться пузырьки воздуха и вредоносные оксиды, что плохо скажется на качестве сварного шва.

Аргонодуговая сварка

Этот способ сварки — оптимальный. За счет применения аргона снижается риск образования оксидов и пузырьков воздуха, что делает шов ровным и твердым. Для сварки нужно использовать электроды на основе вольфрамовых сплавов. Электроды на другой основе быстро разрушаются и могут загрязнять шов. Для проведения сварки рекомендуется использовать ток обратной полярности. Если медное изделие обладает большой и средней толщиной, то в таком случае перед сваркой необходимо выполнить небольшой нагрев. При работе с тонкими изделиями предварительный нагрев можно не выполнять.

Классификация в зависимости от сферы применения

В соответствии с тем, где именно планируется использовать стальную проволоку, разработана следующая классификация:

  • Нержавейка, не боящаяся ржавчины и окислительных процессов;
  • Сварочная, которая применяется при электродуговой сварке;
  • Арматурная, которой укрепляют железобетонные конструкции разных видов;
  • Пружинная, которая, согласно названию, применяется при выпуске пружинных изделий;
  • Канатная, из которой делаются канаты речные и морские. Также она применяется для плетения кабелей;
  • Вязальная, изготовленная из стали с низким содержанием углерода. Востребована повсеместно.

Виды стальной проволоки различаются и размерами, и формой сечения. Группы от первой до девятой включительно имеют толщину сечения от минимального 0,1 (для первой группы) до максимального 8 мм (для девятой).

Что касается формы сечения, то она может быть круглой, квадратной, многогранной или фасонной.

Процесс оцинковки

В целях защиты изделия от коррозийных процессов применяется оцинковка. Прошедшая цинкование проволока может быть использована в неблагоприятных природных условиях, так как она не подвержена воздействию влаги и обладает исключительной износостойкостью. Процесс цинкования имеет свои нюансы. Цинкование может быть проведено горячим способом. Качество проволоки при этом наивысшее. Горячее цинкование способствует защите изделия не только от коррозийных процессов, но и от неблагоприятных факторов окружающей среды. Такая проволока обладает большей гибкостью без потерь прочности.

Расчет сопротивления

Особое значение электрическое сопротивление играет в ситуациях, когда проволока используется в качестве обмотки для трансформаторов и генераторов. Ведь если сопротивление будет слишком большим, то в таком случае при возникновении аварийной ситуации может возникнуть возгорание обмотки, что может привести к катастрофическим последствиям.

Формула сопротивления

Для точного подсчета сопротивления используется следующая формула: R = (P x L)/S. Расшифровывается она так:

  • R — это общее сопротивление. Этот параметр нам нужно найти в результате вычислений (единицы измерения — Ом).
  • P — это удельное сопротивление материала. Этот показатель является физической константой, а зависит он от типа химического элемента. Для меди константа P будет равна 0,0175 (единицы измерения — (Ом x мм x мм)/м).
  • L — это общая длина в метрах. Чем больше она будет, тем выше будет сопротивление проводника.
  • S — это площадь сечения в квадратных миллиметрах. Этот параметр также влияет на итоговое сопротивление — чем меньше он будет, тем выше будет сопротивление.

Обратите внимание, что параметр S обычно указывается в технической документации, однако вместо площади сечения иногда указывается только диаметр сечения провода. В таком случае необходимо рассчитать площадь по по формуле: S = (Pi x d x d)/4. Расшифровывается эта формула следующим образом:

  • Pi — это математическая константа, которая приблизительно равна 3,14.
  • d — это диаметр сечения проводника в миллиметрах.

По итогу сопротивление медной проволоки измеряется по двум формулам: R = (P x L)/S = (4 x P x L)/(Pi x d x d).

Примеры задач

Давайте попытаемся решить несколько несложных задачек:

  • Задача 1. Определить сопротивление проволоки, длина которой составляет 100 метров, а площадь сечения — 5 квадратных миллиметров. В нашей задачке известен параметр площади, поэтому мы будем использовать первую формулу R = (P x L)/S. Подставим наши значения: R = (0,0175 x 100)/5 = 0,35 Ом.
  • Задача 2. Определить сопротивление проволоки, у которой длина составляет 500 метров, а диаметр сечения — 2 миллиметра. В этой задачек известен диаметр, поэтому мы будем пользоваться второй формулой R = (4 x P x L)/(Pi x d x d). Подставим наши значения: R = (4 x 0,0175 x 500)/(3,14 x 2 x 2) = 2,78 Ом.

Виды покрытий

В зависимости об обработки поверхности, стальная проволока может быть:

  • С полировкой;
  • С травлением;
  • Со шлифовкой;
  • С вытяжкой.

Проволока, которая подвергалась обжигу и оцинковке, очень востребована. Сферы ее применения многообразны. Из обработанной обжигом и цинкованием проволоки изготавливают Рабицу. Она идет на производство опор, применяемых в виноградарстве. Еще одна сфера ее применения — линии связи. Необожжённая проволока тоже достаточно востребована. Прежде всего, из нее изготавливают гвозди.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]