Усеченный конус: формула объема, площади поверхностей и другое

Понятие

Принципы образования геометрического тела просты. Представим две параллельные плоскости a и a1. С расположенной на первой точке перпендикуляр опускается на вторую. Точка на a1 – основание перпендикуляра, она является центром круга. Если соединить точку на плоскости a с каждой точкой круга на a1, получится конус. Основание перпендикуляра его – высота.

Второй вариант образования рассматриваемого геометрического тела: прямоугольный треугольник вращается вокруг катета по или против часовой стрелки. Катет, ставший осью, будет высотой конуса, лежащий в основании – диаметром нижней поверхности, гипотенуза – образующей.

Длина образующих одинакова, их совокупность называется боковой поверхностью. Квадрат длины образующей равняется сумме квадратов высоты и радиуса основания (из теоремы Пифагора): l2 = h2 + r2. Отсюда

Элементы фигуры и ее линейные характеристики

Усеченный конус — это пространственная фигура, состоящая из трех поверхностей. Две из них представляют собой круглые основания (верхнее и нижнее) и одна — боковую поверхность. В отличие от многогранников, рассматриваемая фигура не имеет вершин и граней.

Важными параметрами конуса усеченного являются радиусы каждого из оснований. Будем больший радиус обозначать r1, меньший — r2. Помимо радиусов фигуры, для ее однозначного определения необходимо знать либо высоту h, либо образующую g. Указанные параметры связаны математически следующим равенством:

g2 = h2 + (r1 — r2)2

Все четыре параметра используются для определения площади поверхности и объема.

Разновидности конусов

В геометрии насчитывают почти десяток типов конусов:

  • Прямой круговой – нижняя грань представлена кругом – фигурой, имеющей центр симметрии. Ось, которая проходит от вершины к центру основания, перпендикулярна плоскости последнего.
  • Наклонный либо косой – проекция вершины на нижнюю поверхность не совпадает с его центром.
  • Круговой – с кругом в центре.
  • Прямой – нижняя поверхность представлена кругом либо эллипсом. Центр нижней поверхности совпадает с проекцией вершины на неё.
  • Гиперболический, параболический, эллиптический – опираются на соответствующие фигуры.
  • Равносторонний – образующая равна диаметру нижней поверхности.
  • Усеченный – ограниченный плоскостью, параллельной основанию. Располагается между ним и вершиной геометрического тела.
  • Двойной – два одинаковых тела имеют общую вершину или основание и ось – проходит через оба тела.

Задача 3

Рис. 3. – ис­ко­мый угол

Пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са в два раза боль­ше пло­ща­ди его ос­но­ва­ния. Найти угол между об­ра­зу­ю­щей ко­ну­са и плос­ко­стью его ос­но­ва­ния. Ответ дайте в гра­ду­сах (см. рис. 3).

Ре­ше­ние

Зна­чит, .

Те­перь рас­смот­рим осе­вое се­че­ние, про­ве­дем вы­со­ту (ось). По­лу­чим пря­мо­уголь­ный тре­уголь­ник, в ко­то­ром катет (ра­ди­ус ос­но­ва­ния) вдвое мень­ше ги­по­те­ну­зы, зна­чит, угол при ра­ди­у­се равен 60 гра­ду­сам (см. рис. 4).

Рис. 4. Ил­лю­стра­ция к за­да­че

Ответ: 60 гра­ду­сов.

Площадь

Под площадью подразумевают количество квадратов со стороной единица, помещающихся на определенной поверхности.
Площадь прямого конуса определяется по формуле:

  • основания – Sосн = πr2; r – радиус;
  • боковой поверхности – Sбп = πrl; l – длина;
  • полная – S = Sосн + Sбп = πr2 + πrl = πr (r + l).

Пример:

  • диаметр равен 12 см;
  • длина образующей – 10 см.

Решение.

Радиус – это половина диаметра: 12/2 = 6 см.

Подставим значения в выражение: S = πr (r + l).

Получим: S = π * 6 *(6 + 10) = 96 π ≈ 301,584 см2.

Как построить развертку поверхности прямого усеченного конуса

Делим основание конуса на 12 равных частей (вписываем правильную пирамиду). Данные элементы построения уже готовы из чертежа «Сечение конуса плоскостью частного положения».

Строим развертку боковой поверхности конуса, которая представляет собой круговой сектор. Центр его радиуса принимается за вершину конуса, а величина радиуса кругового сектора конуса равна длине образующей конуса, а длина дуги сектора равна длине окружности основания конуса. На дугу сектора переносим 12 хорд, которые определят ее длину, а также угол кругового сектора.

К центральной точке дуги сектора боковой развертки усеченного конуса пристраиваем основание конуса. Его основание проецируется в натуральную величину на горизонтальную плоскость проекции.

На развертке конуса к его основанию пристраиваем натуральную величину сечения.

Две крайние образующие конуса, которые формируют его основной контур, проецируются на фронтальную плоскость проекции в натуральную величину, поэтому их можно сразу переносить на развертку боковой поверхности конуса. Так как часть его срезана фронтально проецирующей плоскостью, то перенесем на развертку конуса только крайнюю правую усеченную образующую. Остальные усеченные образующие конуса проецируются на фронтальную плоскость проекций с искажением. Их натуральную величину находят способом вращения вокруг оси конуса до положения, параллельного фронтальной плоскости проекций.

Сам принцип нахождения натуральных величин образующих усеченного конуса сводится к тому, что проводят из точек пересечения образующих с плоскостью горизонтальную прямую до крайней правой (левой) образующей и на ней отмеряют натуральные их величины. Все действия проводят на фронтальной плоскости проекции.

На каждой образующей, лежащей на развертке боковой поверхности конуса, откладываем действительные длины усеченных образующих. Полученные точки соединяем плавной кривой линией команда Сплайн в Автокад.

Мы выполнили задачу начертательной геометрии на построение развертки усеченного конуса, но чтобы не возникло проблем во время ее защиты (когда я обучался, каждая курсовая по начертательной геометрии защищалась), еще раз рассмотрим принцип вращения для нахождения натуральной величины усеченной образующей конуса.

«Их натуральную величину находят способом вращения вокруг оси конуса до положения, параллельного фронтальной плоскости проекций.» Когда мы вращаем образующую прямого конуса до положения параллельного фронтальной плоскости проекции, то ее траектория описывает дугу на горизонтальной плоскости проекции, а на фронтальной прямую!

Вы можете не проводить линии связи с горизонтальной плоскости проекции на фронтальную, ведь очевидно, что точка будет лежать на крайней основной образующей контура конуса для каждой образующей при нахождении ее натуральной величины. Поэтому сам принцип вращения по нахождению натуральной величины образующих конуса сводится к проведению из точек усеченных образующих горизонтальной прямой до основной образующей контура конуса.

В видеоуроке очень наглядно и подробно показан принцип построения развертки прямого усеченного конуса.

Объем усечённого конуса

Объем – пространство, занимаемое геометрическим телом. Численное значение указывает на количество кубиков с гранью единица, помещающихся в конусе. Объем тела вычисляется как треть произведения площади основания на его высоту.

Основание – круг, его поверхность рассчитывается по формуле: Sосн = πr2. После подстановки получим:

.

Пример: вычислить объем тела: r = 6 см, h = 9 см. Ставим значения в формулу, пошагово упрощаем выражение.

Если известен диаметр, разделите его на два: .

Вычислим объем усеченного конуса. Для понимания, от полного объема исходного тела нужно отнять значение отрезанного параллельной нижней грани плоскостью.

Формула объема усеченного конуса:

Занимайтесь вместе с сайтом «Школково»!

Чтобы не допускать распространенных ошибок при решении задач по теме «Конус», выбирайте наш математический портал. Здесь есть весь необходимый материал для изучения разделов, требующих повторения.

Специалисты образовательного проекта «Школково» предлагают новый подход к подготовке к экзамену, предполагающий переход от простого к сложному. Вначале мы даем полную теорию, основные формулы и элементарные практические задачи с решением, в том числе и по теме «Конус», а затем постепенно переходим к заданиям экспертного уровня, которые также встречаются в ЕГЭ. Вся необходимая информация представлена в разделе «Теоретическая справка».

Вы также можете сразу приступить к решению онлайн-задач на вычисление высоты усеченного конуса, площади его боковой поверхности, объема, а также похожих задач на вычисление, например, нахождению объема или площади сечения куба. Большая база упражнений представлена в разделе «Каталог». Перечень заданий систематически обновляется.

Проверьте, насколько легко вы сможете определить площадь конуса в режиме онлайн. Если упражнение потребовало от вас минимальных усилий, рекомендуем вам не тратить время на простые задачи и переходить к более сложным. А если затруднения все же возникли, тогда вам непременно стоит находить время в своем ежедневном расписании на дистанционные занятия вместе со «Школково». С нами вы сможете быстро усвоить алгоритм решения задач на расчет объема конуса и других неизвестных параметров.

Задача 4

Рис. 5. Се­че­ние ко­ну­са

Рис. 6. Фи­гу­ра в ос­но­ва­нии ко­ну­са

Ра­ди­ус ос­но­ва­ния ко­ну­са равен 6, а его вы­со­та равна 8. Плос­кость се­че­ния со­дер­жит вер­ши­ну ко­ну­са и хорду ос­но­ва­ния, длина ко­то­рой равна 4 (см. рис. 5). Най­ди­те рас­сто­я­ние от цен­тра ос­но­ва­ния ко­ну­са до плос­ко­сти се­че­ния.

Ре­ше­ние

Рас­смот­рим ос­но­ва­ние ко­ну­са. Так как хорда в плос­ко­сти се­че­ния равна 4, а ра­ди­ус равен 6, имеем рав­но­бед­рен­ный тре­уголь­ник, вы­со­та ко­то­ро­го по тео­ре­ме Пи­фа­го­ра равна (см. рис. 6).

Рис. 7. Ко­неч­ный ри­су­нок

Рас­смот­рим тре­уголь­ник ( – вер­ши­на ко­ну­са). До­ка­жем, что вы­со­та этого тре­уголь­ни­ка и есть ис­ко­мое рас­сто­я­ние. Во-пер­вых, по по­стро­е­нию. Во-вто­рых, плос­кость (т.к. пер­пен­ди­ку­ляр­но и ), а зна­чит, .

Сле­до­ва­тель­но, – ис­ко­мое рас­сто­я­ние. По тео­ре­ме Пи­фа­го­ра . А тогда .

Ответ: .

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]