История
В Старом Свете платина не была известна до середины XVI века, однако цивилизации Анд (инки и чибча) добывали и использовали её с незапамятных времён. Первыми европейцами, познакомившимися с платиной в середине XVI века, были конкистадоры. Считается, что первым в литературе упомянул о платине Скалигер в опубликованной в 1557 году книге «Экзотерические упражнения в 15 книгах», где он, полемизируя с Кардано о понятии «металл», рассказал о некоем веществе из Гондураса, которое нельзя расплавить. Вероятно, этим веществом и была платина.
В 1735 году испанский король издаёт указ, повелевающий платину впредь в Испанию не ввозить. При разработке россыпей в Колумбии повелевалось тщательно отделять её от золота и топить под надзором королевских чиновников в глубоких местах речки Рио-дель-Пинто (приток Рио-Сан-Хуан (англ.)русск.), которую стали именовать Платино-дель-Пинто. А ту платину, которая уже привезена в Испанию, повелевалось всенародно и торжественно утопить в море. Королевское распоряжение было отменено через 40 лет, когда мадридские власти приказали доставлять платину в Испанию, чтобы самим фальсифицировать золотые и серебряные монеты. В 1820 году в Европу было доставлено от 3 до 7 тонн платины. Здесь с нею познакомились алхимики, считавшие самым тяжёлым металлом золото. Необычайно плотная платина оказалась тяжелее золота, поэтому алхимики посчитали её непригодным металлом и наделили адскими чертами. Некоторое применение платина нашла позже во Франции, когда из неё был изготовлен эталон метра, а позже эталон килограмма.
Согласно некоторым источникам, испанский математик и мореплаватель А. де Ульоа в 1744 году привёз образцы платины в Лондон, он поместил описание платины в своём отчёте о путешествии в Южную Америку, опубликованном в 1748 году. В 1789 А. Лавуазье включил платину в список простых веществ. Впервые в чистом виде из руд платина была получена английским химиком У. Волластоном в 1803 году.
В России ещё в 1819 году в россыпном золоте, добытом на Урале, был обнаружен «новый сибирский металл», который сначала называли белым золотом. Платина встречалась на Верх-Исетских, а затем и на Невьянских и Билимбаевских приисках. Богатые россыпи платины были открыты во второй половине 1824 года, а на следующий год в России началась её добыча. В 1826 году П. Г. Соболевский и В. В. Любарский изобрели метод выработки ковкой платины с помощью прессования и последующей выдержки в раскалённом добела состоянии.
Ювелирная область
Ежегодно для изготовления ювелирных изделий используется более 50 тонн платины. Большая часть продаваемых изделий содержит 95% чистого минерала. Поскольку в аксессуарах мало примесей, они не тускнеют, не теряют свой красивый серебристый цвет и сохраняют блеск надолго. Из платины создают красивые колье, цепочки, браслеты, серьги, кольца.
Ювелирные украшения с чистым составом не раздражают кожу, как это часто бывает с аксессуарами, содержащими аллергенные металлы. Яркий блеск напоминает бриллиантовое сияние. Платина служит прекрасной оправой для драгоценных камней. Её часто сочетают с природными жёлтыми тонами золота.
Платиновые украшения часто выбирают из-за их высокой прочности. Ювелирные аксессуары из золота и серебра через какое-то время изнашиваются, и их приходится сдавать в ремонт для замены испортившегося слоя новым. С предметами из платины такого не бывает, поэтому они служат своим владельцам всю жизнь.
Нахождение в природе
Изотопы
Природная платина встречается в виде смеси из шести изотопов: 190Pt (0,014 %), 192Pt (0,782 %), 194Pt (32,967 %), 195Pt (33,832 %), 196Pt (25,242 %), 198Pt (7,163 %). Один из них слабо радиоактивен (190Pt, альфа-распад в 186Os, период полураспада 6,5⋅1011 лет). Предсказывается существование очень слабой радиоактивности ещё двух природных изотопов платины: альфа-распад 192Pt→188Os и двойной бета-распад 198Pt→198Hg, однако пока экспериментально эти распады не зарегистрированы; установлено лишь, что периоды полураспада превышают соответственно 4,7×1016 лет и 3,2×1014 лет.
Месторождения
Самородок платины, месторождение Кондёр
Платина является одним из самых редких металлов: её среднее содержание в земной коре (кларк) составляет 5⋅10−7 % по массе. Даже так называемая самородная платина является сплавом, содержащим от 75 до 92 процентов платины, до 20 процентов железа, а также иридий, палладий, родий, осмий, реже медь и никель.
Основная часть месторождений платины (более 90 %) заключена в недрах пяти стран. К этим странам относятся ЮАР (Бушвелдский комплекс), США, Россия, Зимбабве, Китай.
В России основными месторождениями металлов платиновой группы являются: Октябрьское, Талнахское и Норильск-1 сульфидно-медно-никелевые в Красноярском крае в районе Норильска (более 99 % разведанных и более 94 % оцененных российских запасов), Фёдорова Тундра (участок Большой Ихтегипахк) сульфидно-медно-никелевое в Мурманской области, а также россыпные Кондёр в Хабаровском крае, Левтыринываям в Камчатском крае, реки Лобва и Выйско-Исовское в Свердловской области. Крупнейшим платиновым самородком, найденным в России, является «Уральский гигант» массой 7860,5 г, обнаруженный в 1904 г. на Исовском прииске; в настоящее время хранится в Алмазном фонде.
Кто знает, металл с наименьшей плотностью?
ПОС 61 олово 64%,свинец 36% 181 Т, П натрий 70%,ртуть 30% 181 Т Хим. акт, Токсичен. кадмий 32%,олово 68% 177(178) Т, П Эвтектический сплав свинец 32%,олово 68% 177 Т, П висмут 12,8%,свинец 49%,олово 38,2% 172 Т, П калий 80%,таллий 20% 165 Т Хим. акт висмут 13,3%,свинец 46%,олово 40,1% 165 Т, П ∑? висмут 10,5%,свинец 42%,олово 47,5% 160 Т, П висмут 13,7%,свинец 44,8%,олово 41,5% 160 Т, П Эвтектический сплав висмут 16%,свинец 36%,олово 48% 155 Т, П висмут 18,1%,свинец 36,2%,олово 45,7% 151 Т, П висмут 25%,свинец 50%,олово 25% 149 Т, П висмут 62,5%,кадмий 37,5% 149 Т, П висмут 19%,свинец 38%,олово 43% 148 Т, П висмут 50%,свинец 50% 145 Т, П свинец 32%,олово 50%,кадмий 18% 145 Т, П висмут 60%,кадмий 40% 144 Т, П Эвтектический сплав свинец 42%,олово 37% 143 Т, П ∑? кадмий 18,2%,свинец 30,6%,олово 51,2% 142 8,8 Т, П
Получение
Самородную платину добывают на приисках (см. подробнее в статье Благородные металлы), менее богаты рассыпные месторождения платины, которые разведываются, в основном, способом шлихового опробования.
Производство платины в виде порошка началось в 1805 году английским ученым У. Х. Волластоном из южноамериканской руды.
Сегодня платину получают из концентрата платиновых металлов. Концентрат растворяют в царской водке, после чего добавляют этанол и сахарный сироп для удаления избытка HNO3. При этом иридий и палладий восстанавливаются до Ir3+ и Pd2+. Последующим добавлением хлорида аммония выделяют гексахлороплатинат (IV) аммония (NH4)2PtCl6. Высушенный осадок прокаливают при 800—1000 °C:
3(NH4)2[PtCl6] →T 2N2↑ + 2NH3↑ + 18HCl + 3Pt
Получаемую таким образом губчатую платину подвергают дальнейшей очистке повторным растворением в царской водке, осаждением (NH4)2PtCl6 и прокаливанием остатка. Затем очищенную губчатую платину переплавляют в слитки. При восстановлении растворов солей платины химическим или электрохимическим способом получают мелкодисперсную платину — платиновую чернь.
Платина для человека
В сферу применения драгоценного металла входят нефтеперерабатывающая промышленность. Тут не обойтись без катализаторов, содержащих платину. Сюда уходит львиная доля (около половины добываемого благородного металла). Химическая промышленность использует благородный металл в производстве азотной кислоты.
Рекомендуем: КРЕМНИЙ — он нужен всем
Платина незаменима в радиотехнике, электротехнике, телемеханике, точном приборостроении.
Используют «серебришко» в медицине. Здесь из сплавов платины делают хирургические инструменты. Существуют методики лечения онкологических заболеваний с помощью цис-изомеров, производных двухвалентной платины.
Активность партии зеленых привела к росту потребления «королевы металлов» в автомобилестроении. Ужесточение норм по вредным выбросам в атмосферу привело к оснащению автомобилей автокатализаторами.
Из сплава платины с иридием изготовлен российский эталон килограмма.
Познавательно: в полиции и казино используют зеркала с платиновым покрытием. С освещенной стороны оно работает, как заурядное зеркало, с теневой — прозрачно, как стекло.
Физические свойства
Серовато-белый пластичный металл, температуры плавления и кипения — 2041,4 K (1768,3 °C) и 4098 K (3825 °C) соответственно, удельное электрическое сопротивление — 0,098 мкОм·м (при 0 °С). Платина — один из самых тяжёлых (плотность 21,09—21,45 г/см³; атомная плотность 6,62⋅1022 ат/см³) металлов. Твёрдость по Бринеллю — 50 кгс/мм2 (по Моосу 3,5).
Кристаллическая решётка кубическая гранецентрированная, а
= 0,392 нм,
Z
= 4, пространственная группа
Fm
3
m
.
Платина устойчива к вакууму и может применяться в космической технике.
Таблицы плотности металлов и сплавов
Все металлы обладают определенными физико-механическими свойствами, которые, собственно говоря, и определяют их удельный вес. Чтобы определить, насколько тот или иной сплав черной или нержавеющий стали подходит для производства рассчитывается удельный вес металлопроката. Все металлические изделия, имеющие одинаковый объем, но произведенные из различных металлов, к примеру, из железа, латуни или алюминия, имеют различную массу, которая находится в прямой зависимости от его объема. Иными словами, отношение объема сплава к его массе — удельная плотность (кг/м3), является постоянной величиной, которая будет характерной для данного вещества. Плотность сплава рассчитывается по специальной формуле и имеет прямое отношение к расчету удельного веса металла.
Удельным весом металла называется отношение веса однородного тела из этого вещества к объему металла, т.е. это плотность, в справочниках измеряется в кг/м3 или г/см3. Отсюда можно вычислить формулу как узнать вес металла. Чтобы это найти нужно умножить справочное значение плотности на объем.
В таблице даны плотности металлов цветных и черного железа. Таблица разделена на группы металлов и сплавов, где под каждым наименованием обозначена марка по ГОСТ и соответствующая ей плотность в г/см3 в зависимости от температуры плавления. Для определения физического значения удельной плотности в кг/м3 нужно табличную величину в г/см3 умножить на 1000. Например, так можно узнать какова плотность железа — 7850 кг/м3.
Наиболее типичным черным металлом является железо. Значение плотности — 7,85 г/см3 можно считать удельным весом черного металла на основе железа. К черным металлам в таблице относятся железо, марганец, титан, никель, хром, ваннадий, вольфрам, молибден, и черные сплавы на их основе, например, нержавеющие стали (плотность 7,7-8,0 г/см3), черные стали (плотность 7,85 г/см3) в основном используют производители металлоконструкций в Украине , чугун (плотность 7,0-7,3 г/см3). Остальные металлы считаются цветными, а также сплавы на их основе. К цветным металлам в таблице относятся следующие виды:
− легкие — магний, алюминий;
− благородные металлы (драгоценные) — платина, золото, серебро и полублагородная медь;
− легкоплавкие металлы – цинк, олово, свинец.
Химические свойства
Растворение платины в горячей царской водке
По химическим свойствам платина похожа на палладий, но проявляет бо́льшую химическую устойчивость. При комнатной температуре реагирует с царской водкой:
3Pt + 4HNO3 + 18HCl → 3H2[PtCl6] + 4NO↑ + 8H2O
Платина медленно растворяется в горячей концентрированной серной кислоте и жидком броме. Она не взаимодействует с другими минеральными и органическими кислотами. При нагревании реагирует со щелочами и пероксидом натрия, галогенами (особенно в присутствии галогенидов щелочных металлов):
Pt + 2Cl2 + 2NaCl → Na2[PtCl6]
При нагревании платина реагирует с серой, селеном, теллуром, углеродом и кремнием. Как и палладий, платина может растворять молекулярный водород, но объём поглощаемого водорода и способность его отдавать при нагревании у платины меньше.
При нагревании платина реагирует с кислородом с образованием летучих оксидов. Выделены следующие оксиды платины: чёрный PtO, коричневый PtO2, красновато-коричневый PtO3, а также Pt2O3 и смешанный Pt3O4, в котором платина проявляет степени окисления II и IV.
Для платины известны гидроксиды Pt(OH)2 и Pt(OH)4. Получают их при щелочном гидролизе соответствующих хлороплатинатов, например:
Na2[PtCl4] + 2NaOH → 4NaCl + Pt(OH)2↓ Na2[PtCl6] + 4NaOH → 6NaCl + Pt(OH)4↓
Эти гидроксиды проявляют амфотерные свойства:
Pt(OH)2 + 2NaOH → Na2[Pt(OH)4] Pt(OH)2 + 4HBr → H2[PtBr4] + 2H2O Pt(OH)4 + 2NaOH → Na2[Pt(OH)6] Pt(OH)4 + 6HBr → H2[PtBr6] + 4H2O
Гексафторид платины PtF6 является одним из сильнейших окислителей среди всех известных химических соединений, способный окислить молекулы кислорода и ксенона:
O2 + PtF6 → O2 + [PtF6]−
Соединение O2+[PtF6]− (гексафтороплатинат(V) диоксигенила) летуче и разлагается водой на фтороплатинат(IV), небольшое количество гидратированного диоксида платины и кислород с примесью озона.
С помощью гексафторида платины, в частности, канадский химик Нейл Бартлетт в 1962 году получил первое настоящее химическое соединение ксенона Xe[PtF6].
C обнаруженного Н. Бартлеттом взаимодействия между Хе и PtF6, приводящего к образованию Xe[PtF6], началась химия инертных газов. PtF6 получают фторированием платины при 1000 °C под давлением.
Фторирование платины при нормальным давлении и температуре 350—400 °C даёт фторид платины(IV):
Pt + 2F2 → PtF4
Фториды платины гигроскопичны и разлагаются водой.
Тетрахлорид платины с водой образует гидраты PtCl4·n
H2O, где
n
= 1, 4, 5 и 7. Растворением PtCl4 в соляной кислоте получают платинохлористоводородные кислоты H[PtCl5] и H2[PtCl6].
Синтезированы такие галогениды платины, как PtBr4, PtCl2, PtCl2·2PtCl3, PtBr2 и PtI2.
Для платины характерно образование комплексных соединений состава [PtX4]2- и [PtX6]2-. Изучая комплексы платины, А. Вернер сформулировал теорию комплексных соединений и объяснил природу возникновения изомеров в комплексных соединениях.
Реакционная способность
Монета 3 рубля, 1834
Платина является одним из самых инертных металлов. Она нерастворима в кислотах и щелочах, за исключением царской водки. Платина также непосредственно реагирует с бромом, растворяясь в нём.
При нагревании платина становится более реакционноспособной. Она реагирует с пероксидами, а при контакте с кислородом воздуха — с щелочами. Тонкая платиновая проволока горит во фторе с выделением большого количества тепла. Реакции с другими неметаллами (хлором, серой, фосфором) происходят менее активно. При более сильном нагревании платина реагирует с углеродом и кремнием, образуя твёрдые растворы, аналогично металлам группы железа.
В своих соединениях платина проявляет почти все степени окисления от 0 до +6, из которых наиболее устойчивы +2 и +4. Для платины характерно образование многочисленных комплексных соединений, которых известно много сотен. Многие из них носят имена изучавших их химиков (соли Косса, Магнуса, Пейроне, Цейзе, Чугаева и т. д.). Большой вклад в изучение таких соединений внес русский химик Л. А. Чугаев (1873−1922), первый директор созданного в 1918 году Института по изучению платины.
Катализатор
Платина, особенно в мелкодисперсном состоянии, является очень активным катализатором многих химических реакций, в том числе используемых в промышленных масштабах. Например, платина катализирует реакцию присоединения водорода к ароматическим соединениям даже при комнатной температуре и атмосферном давлении водорода. Ещё в 1821 немецкий химик И. В. Дёберейнер обнаружил, что платиновая чернь способствует протеканию ряда химических реакций; при этом сама платина не претерпевала изменений. Так, платиновая чернь окисляла пары винного спирта (этанола) до уксусной кислоты уже при обычной температуре. Через два года Дёберейнер открыл способность губчатой платины при комнатной температуре воспламенять водород. Если смесь водорода и кислорода (гремучий газ) ввести в соприкосновение с платиновой чернью или с губчатой платиной, то сначала идет сравнительно спокойная реакция горения. Но так как эта реакция сопровождается выделением большого количества теплоты, платиновая губка раскаляется, и гремучий газ взрывается. На основании своего открытия Дёберейнер сконструировал «водородное огниво» — прибор, широко применявшийся для получения огня до изобретения спичек.
Плотность металлов
Это самая многочисленная группа периодической таблицы Менделеева. Металлом является любое вещество, которое обладает высокой тепло- и электропроводностью, характерным блеском поверхности при ее полировке, способностью к пластической деформации.
Такой химический элемент обладает низкой электроотрицательностью в сравнении с такими веществами, как азот, кислород и углерод. Этот факт приводит к тому, что в объемных структурах атомы металла образуют друг с другом металлическую связь. Она представляет собой электрическое взаимодействие между положительно заряженными ионными основаниями и отрицательным электронным газом.
Атомы металлов в пространстве располагаются в виде упорядоченной структуры, которая называется кристаллической решеткой. Существует всего три их типа:
- кубическая;
- ОЦК (объемно-центрированная кубическая);
- ГПУ (гексагональная плотноупакованная);
- ГЦК (гранецентрированная кубическая).
Плотность металлов — это физическая величина, которая зависит от типа кристаллической решетки. Ниже приводится таблица этого параметра для всех химических элементов в г/см 3 , которые при нормальных условиях находятся в твердом состоянии.
Из таблицы следует, что плотность металлов — это изменяющаяся в широких пределах величина. Так, самым слабым является литий, который при одинаковых объемах в два раза легче воды. Плотность редкого металла осмия является самой большой в природе. Она составляет 22,59 г/см 3 .
Определение массы изделия
Все современные справочные материалы, ГОСТ и технические условия предприятий скорректированы в соответствии с международной классификацией.
Пользуясь справочными таблицами плотностей различных материалов, легко определить их массу. Это особенно актуально, когда предметы тяжёлые или отсутствуют соответствующие весы. Для этого требуется знать их геометрические параметры. Чаще всего узнать требуется массу предмета в форме цилиндра, трубы или параллелепипеда:
- Металлические прутки имеют форму цилиндра. Зная диаметр и длину, легко узнать массу. Масса равна плотности, умноженной на объём. Находим объём предмета. Он получается умножением площади сечения на длину. Площадь круга, зная диаметр, определить несложно. Диаметр в квадрате умножается на 3,14 (число пи), делится на 4.
- Массу трубы получаем аналогично. При нахождении площади берём разницу между внешним и внутренним диаметром сечения.
- Чтобы определить массу листа, блюма, сляба или прутка прямоугольного сечения, определяем объём, перемножая длину, высоту и толщину. Умножаем на плотность из справочника.
При таких вычислениях всегда допускается маленькая погрешность, ведь формы не идеальны. На практике ей можно пренебречь. Производители металлоизделий разработали специальные калькуляторы вычисления массы для пользователей. Достаточно ввести уникальные размеры в соответствующие окна и получить результат.