Углерод, свойства атома, химические и физические свойства


Свойства атома углерода:

200Свойства атома
201Атомная масса (молярная масса)*12,0096-12,0116 а.е.м. (г/моль)
202Электронная конфигурация1s2 2s2 2p2
203Электронная оболочкаK2 L4 M0 N0 O0 P0 Q0 R0
204Радиус атома (вычисленный)67 пм
205Эмпирический радиус атома70 пм
206Ковалентный радиус*76 пм
207Радиус иона (кристаллический)C4+
29 (4) пм,

30 (6) пм

(в скобках указано координационное число – характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле)

208Радиус Ван-дер-Ваальса170 пм
209Электроны, Протоны, Нейтроны6 электронов, 6 протонов, 6 нейтронов
210Семейство (блок)элемент p-семейства
211Период в периодической таблице2
212Группа в периодической таблице14-ая группа (по старой классификации – главная подгруппа 4-ой группы)
213Эмиссионный спектр излучения

Применение

Графит используется в карандашной промышленности. Также его используют в качестве смазки при особо высоких или низких температурах.

Алмаз, благодаря исключительной твердости, незаменимый абразивный материал. Алмазным напылением обладают шлифовальные насадки бормашин. Кроме этого, ограненные алмазы — бриллианты используются в качестве драгоценных камней в ювелирных украшениях. Благодаря редкости, высоким декоративным качествам и стечению исторических обстоятельств, бриллиант неизменно является самым дорогим драгоценным камнем. Исключительно высокая теплопроводность алмаза (до 2000 Вт/м•К) делает его перспективным материалом для полупроводниковой техники в качестве подложек для процессоров. Но относительно высокая цена (около 50 долларов/грамм) и сложность обработки алмаза ограничивают его применение в этой области. В фармакологии и медицине широко используются различные соединения углерода— производные угольной кислоты и карбоновых кислот, различные гетероциклы, полимеры и другие соединения. Так, карболен (активированный уголь), применяется для абсорбции и выведения из организма различных токсинов; графит (в виде мазей)— для лечения кожных заболеваний; радиоактивные изотопы углерода— для научных исследований (радиоуглеродный анализ).

Углерод играет огромную роль в жизни человека. Его применения столь же разнообразны, как сам этот многоликий элемент.

Углерод является основой всех органических веществ. Любой живой организм состоит в значительной степени из углерода. Углерод— основа жизни. Источником углерода для живых организмов обычно является СО2 из атмосферы или воды. В результате фотосинтеза он попадает в биологические пищевые цепи, в которых живые существа пожирают друг друга или останки друг друга и тем самым добывают углерод для строительства собственного тела. Биологический цикл углерода заканчивается либо окислением и возврашением в атмосферу, либо захоронением в виде угля или нефти.

Углерод в виде ископаемого топлива: угля и углеводородов (нефть, природный газ)— один из важнейших источников энергии для человечества.

Химические свойства углерода:

300Химические свойства
301Степени окисления-4 , -3 , -2 , -1 , 0 , +1, +2, +3, +4
302ВалентностьII, IV
303Электроотрицательность2,55 (шкала Полинга)
304Энергия ионизации (первый электрон)1086,45 кДж/моль (11,2602880(11) эВ)
305Электродный потенциал
306Энергия сродства атома к электрону121,7763(1) кДж/моль (1,2621226(11) эВ) – углерод 12C,
121,7755(2) кДж/моль (1,2621136(12) эВ) – углерод 13C

Нахождение в природе

Содержание углерода в земной коре 0,1% по массе. Свободный углерод находится в природе в виде алмаза и графита. Основная масса углерода в виде природных карбонатов (известняки и доломиты), горючих ископаемых— антрацит (94—97% С), бурые угли (64—80% С), каменные угли (76—95% С), горючие сланцы (56—78% С), нефть (82—87% С), горючих природных газов (до 99% метана), торф (53—56% С), а также битумы и др. В атмосфере и гидросфере находится в виде диоксида углерода СО2, в воздухе 0,046% СО2 по массе, в водах рек, морей и океанов в ~60 раз больше. Углерод входит в состав растений и животных (~18%). В организм человека углерод поступает с пищей (в норме около 300 г в сутки). Общее содержание углерода в организме человека достигает около 21% (15кг на 70кг массы тела). Углерод составляет 2/3 массы мышц и 1/3 массы костной ткани. Выводится из организма преимущественно с выдыхаемым воздухом (углекислый газ) и мочой (мочевина) Кругооборот углерода в природе включает биологический цикл, выделение СО2 в атмосферу при сгорании ископаемого топлива, из вулканических газов, горячих минеральных источников, из поверхностных слоев океанических вод и др. Биологический цикл состоит в том, что углерод в виде СО2 поглощается из тропосферы растениями. Затем из биосферы вновь возвращается в геосферу: с растениями углерод попадает в организм животных и человека, а затем при гниении животных и растительных материалов— в почву и в виде СО2— в атмосферу.

В парообразном состоянии и в виде соединений с азотом и водородом углерод обнаружен в атмосфере Солнца, планет, он найден в каменных и железных метеоритах.

Большинство соединений углерода, и прежде всего углеводороды, обладают ярко выраженным характером ковалентных соединений. Прочность простых, двойных и тройных связей атомов С между собой, способность образовывать устойчивые цепи и циклы из атомов С обусловливают существования огромного числа углеродсодержащих соединений, изучаемых органической химией.

Физические свойства углерода:

400Физические свойства
401Плотность*1,8-2,1 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело) – аморфный углерод,
2,267 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело) – графит,

3,515 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело) – алмаз

402Температура плавления
403Температура кипения
404Температура сублимации3642 °C (3915 K, 6588 °F) – графит
405Температура разложения1000 °C (1273 K, 1832 °F) – алмаз. Продукты разложения алмаза – графит
406Температура самовоспламенения смеси газа с воздухом
407Удельная теплота плавления (энтальпия плавления ΔHпл)
408Удельная теплота испарения (энтальпия кипения ΔHкип)715 кДж/моль (сублимация)
409Удельная теплоемкость при постоянном давлении
410Молярная теплоёмкость*8,517Дж/(K·моль) – графит,
6,155 Дж/(K·моль) – алмаз
411Молярный объём5,314469 см³/моль – графит,
3,42 см³/моль – алмаз
412Теплопроводность119-165 Вт/(м·К) (при стандартных условиях) – графит,
900-2300 Вт/(м·К) (при стандартных условиях) – алмаз
413Коэффициент теплового расширения0,8 мкм/(М·К) (при 25 °С) – алмаз
414Коэффициент температуропроводности
415Критическая температура
416Критическое давление
417Критическая плотность
418Тройная точка4326,85 °C (4600 К, 7820,33 °F), 10,8 МПа
419Давление паров (мм.рт.ст.)0,000000001 мм.рт.ст. (при 1591 °C) — графит, 0,00000001 мм.рт.ст. (при 1690 °C) — графит, 0,0000001 мм.рт.ст. (при 1800 °C) — графит, 0,000001 мм.рт.ст. (при 1922 °C) — графит, 0,00001 мм.рт.ст. (при 2160 °C) — графит, 0,0001 мм.рт.ст. (при 2217 °C) — графит, 0,001 мм.рт.ст. (при 2396 °C) — графит, 0,01 мм.рт.ст. (при 2543 °C) — графит, 0,1 мм.рт.ст. (при 2845 °C) — графит, 1 мм.рт.ст. (при 3214 °C) — графит, 10 мм.рт.ст. (при 3496 °C) — графит, 100 мм.рт.ст. (при 4373 °C) — графит
420Давление паров (Па)
421Стандартная энтальпия образования ΔH0 кДж/моль (при 298 К, для состояния вещества – твердое тело) – графит,
717 кДж/моль (при 298 К, для состояния вещества – газ) – графит,

1,828 кДж/моль (при 298 К, для состояния вещества – твердое тело) – алмаз

422Стандартная энергия Гиббса образования ΔG0 кДж/моль (при 298 К, для состояния вещества – твердое тело) – графит,
2,833 кДж/моль (при 298 К, для состояния вещества – твердое тело) – алмаз
423Стандартная энтропия вещества S5,74 Дж/(моль·K) (при 298 К, для состояния вещества – твердое тело) – графит,
158 Дж/(моль·K) (при 298 К, для состояния вещества – газ) – графит,

2,368 Дж/(моль·K) (при 298 К, для состояния вещества – твердое тело) – алмаз

424Стандартная мольная теплоемкость Cp8,54 Дж/(моль·K) (при 298 К, для состояния вещества – твердое тело) – графит,
20,8 Дж/(моль·K) (при 298 К, для состояния вещества – газ) – графит,

6,117 Дж/(моль·K) (при 298 К, для состояния вещества – твердое тело) – алмаз

425Энтальпия диссоциации ΔHдисс
426Диэлектрическая проницаемость
427Магнитный типДиамагнитный материал
428Точка Кюри
429Объемная магнитная восприимчивость-1,4·10-5 – графит
430Удельная магнитная восприимчивость-6,2·10-9 – графит
431Молярная магнитная восприимчивость-5,9·10-6 см3/моль (при 298 K) – графит,
-6,0·10-6 см3/моль (при 298 K) – алмаз
432Электрический типПроводник – графит, диэлектрик – алмаз
433Электропроводность в твердой фазе0,1·106 См/м – графит
434Удельное электрическое сопротивление7,837 мкОм·М (при 20 °C) – графит
435Сверхпроводимость при температуре
436Критическое магнитное поле разрушения сверхпроводимости
437Запрещенная зона5,46-6,4 эВ (при 300 K) – алмаз, 5,4 эВ (при 0 K) – алмаз
438Концентрация носителей заряда
439Твёрдость по Моосу1-2 – графит,
10 – алмаз
440Твёрдость по Бринеллю
441Твёрдость по Виккерсу
442Скорость звука17500 м/с (при 20°C, состояние среды — кристаллы, ось L100) – алмаз, 12800 м/с (при 20°C, состояние среды — кристаллы, ось S100) – алмаз, 18600 м/с (при 20°C, состояние среды — кристаллы, ось L111) – алмаз, 11600 м/с (при 20°C, состояние среды — кристаллы, ось S110) – алмаз
443Поверхностное натяжение
444Динамическая вязкость газов и жидкостей
445Взрывоопасные концентрации смеси газа с воздухом, % объёмных
446Взрывоопасные концентрации смеси газа с кислородом, % объёмных
446Предел прочности на растяжение
447Предел текучести
448Предел удлинения
449Модуль Юнга1050 ГПа — алмаз
450Модуль сдвига478 ГПа – алмаз
451Объемный модуль упругости442 ГПа – алмаз
452Коэффициент Пуассона0,1 – алмаз
453Коэффициент преломления2,417 (при стандартных условиях для линии D, длина волны которой приближенно равна 0,5893 μ) – алмаз белый

Теплопроводность и коэффициент теплопроводности. Что это такое

Так что же такое теплопроводность? С точки зрения физики теплопроводность

– это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Можно сказать проще, теплопроводность

– это способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой. Такой процесс может происходить в твердых, жидких и газообразных веществах.

На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем “абстрактный дом”. В “абстрактном доме” стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С. Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

Чтобы поддерживать температуру в доме 25 °С, нагреватель должен постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

Коэффициент теплопроводности

Количество тепла, которое проходит через стены (а по научному – интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.

Для количественной оценки теплопроводности существует коэффициент теплопроводности материалов. Этот коэффициент отражает свойство вещества проводить тепловую энергию. Чем больше значение коэффициента теплопроводности материала, тем лучше он проводит тепло.

Если мы собираемся утеплять дом, то надо выбирать материалы с небольшим значением этого коэффициента. Чем он меньше, тем лучше. Сейчас в качестве материалов для утепления зданий наибольшее распространение получили утеплители из минеральной ваты, и различных пенопластов.

Набирает популярность новый материал с улучшенными теплоизоляционными качествами – Неопор.

Коэффициент теплопроводности материалов обозначается буквой ? (греческая строчная буква лямбда) и выражается в Вт/(м2*К). Это означает, что если взять стену из кирпича, с коэффициентом теплопроводности 0,67 Вт/(м2*К), толщиной 1 метр и площадью 1 м2.

, то при разнице температур в 1 градус, через стену будет проходить 0,67 ватта тепловой энергии. Если разница температур будет 10 градусов, то будет проходить уже 6,7 ватта. А если при такой разнице температур стену сделать 10 см, то потери тепла будут уже 67 ватт.

Подробней о методике расчета теплопотерь зданий можно посмотреть здесь.

Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.

В строительных нормах и расчетах часто используется понятие “тепловое сопротивление материала”. Это величина обратная теплопроводности. Если, на пример, теплопроводность пенопласта толщиной 10 см – 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.

Коэффициент теплопроводности материалов

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

МатериалКоэфф. тепл. Вт/(м2*К)
Алебастровые плиты0,470
Алюминий230,0
Асбест (шифер)0,350
Асбест волокнистый0,150
Асбестоцемент1,760
Асбоцементные плиты0,350
Асфальт0,720
Асфальт в полах0,800
Бакелит0,230
Бетон на каменном щебне1,300
Бетон на песке0,700
Бетон пористый1,400
Бетон сплошной1,750
Бетон термоизоляционный0,180
Битум0,470
Бумага0,140
Вата минеральная легкая0,045
Вата минеральная тяжелая0,055
Вата хлопковая0,055
Вермикулитовые листы0,100
Войлок шерстяной0,045
Гипс строительный0,350
Глинозем2,330
Гравий (наполнитель)0,930
Гранит, базальт3,500
Грунт 10% воды1,750
Грунт 20% воды2,100
Грунт песчаный1,160
Грунт сухой0,400
Грунт утрамбованный1,050
Гудрон0,300
Древесина – доски0,150
Древесина – фанера0,150
Древесина твердых пород0,200
Древесно-стружечная плита ДСП0,200
Дюралюминий160,0
Железобетон1,700
Зола древесная0,150
Известняк1,700
Известь-песок раствор0,870
Ипорка (вспененная смола)0,038
Камень1,400
Картон строительный многослойный0,130
Каучук вспененный0,030
Каучук натуральный0,042
Каучук фторированный0,055
Керамзитобетон0,200
Кирпич кремнеземный0,150
Кирпич пустотелый0,440
Кирпич силикатный0,810
Кирпич сплошной0,670
Кирпич шлаковый0,580
Кремнезистые плиты0,070
Латунь110,0
Лед 0°С2,210
Лед -20°С2,440
Липа, береза, клен, дуб (15% влажности)0,150
Медь380,0
Мипора0,085
Опилки – засыпка0,095
Опилки древесные сухие0,065
ПВХ0,190
Пенобетон0,300
Пенопласт ПС-10,037
Пенопласт ПС-40,040
Пенопласт ПХВ-10,050
Пенопласт резопен ФРП0,045
Пенополистирол ПС-Б0,040
Пенополистирол ПС-БС0,040
Пенополиуретановые листы0,035
Пенополиуретановые панели0,025
Пеностекло легкое0,060
Пеностекло тяжелое0,080
Пергамин0,170
Перлит0,050
Перлито-цементные плиты0,080
Песок 0% влажности0,330
Песок 10% влажности0,970
Песок 20% влажности1,330
Песчаник обожженный1,500
Плитка облицовочная1,050
Плитка термоизоляционная ПМТБ-20,036
Полистирол0,082
Поролон0,040
Портландцемент раствор0,470
Пробковая плита0,043
Пробковые листы легкие0,035
Пробковые листы тяжелые0,050
Резина0,150
Рубероид0,170
Сланец2,100
Снег1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности)0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности)0,230
Сталь52,0
Стекло1,150
Стекловата0,050
Стекловолокно0,036
Стеклотекстолит0,300
Стружки – набивка0,120
Тефлон0,250
Толь бумажный0,230
Цементные плиты1,920
Цемент-песок раствор1,200
Чугун56,0
Шлак гранулированный0,150
Шлак котельный0,290
Шлакобетон0,600
Штукатурка сухая0,210
Штукатурка цементная0,900
Эбонит0,160

Источник: https://www.econel.ru/teploprovodnost/

Кристаллическая решётка углерода:

500Кристаллическая решётка
511Кристаллическая решётка #1α-графит
512Структура решёткиГексагональная
513Параметры решёткиa = 2,46 Å, c = 6,71 Å
514Отношение c/a2,73
515Температура Дебая
516Название пространственной группы симметрииP63/mmc
517Номер пространственной группы симметрии194
521Кристаллическая решётка #2Алмаз
522Структура решёткиКубическая алмазная
523Параметры решёткиa = 3,567 Å
524Отношение c/a
525Температура Дебая1860 K
526Название пространственной группы симметрииFd_ 3m
527Номер пространственной группы симметрии225

Примечание:

201* Указан диапазон значений атомной массы в связи с различной распространённостью изотопов данного элемента в природе.

206* Ковалентный радиус углерода согласно [1] составляет для sp3 – 77 пм, для sp2 – 73 пм, sp – 69 пм, согласно [3] составляет 77 пм.

401* Плотность графита согласно [3] составляет 2,25 г/см3 (при 0 °C и иных стандартных условиях, состояние вещества – твердое тело).

410* Молярная теплоемкость графита согласно [3] составляет 8,54 Дж/(K·моль).

История

Углерод в виде древесного угля применялся в древности для выплавки металлов. Издавна известны аллотропные модификации углерода — алмаз и графит.
На рубеже XVII—XVIII вв. возникла теория флогистона, выдвинутая Иоганном Бехером и Георгом Шталем. Эта теория признавала наличие в каждом горючем теле особого элементарного вещества — невесомого флюида — флогистона, улетучивающегося в процессе горения. Так как при сгорании большого количества угля остается лишь немного золы, флогистики полагали, что уголь — это почти чистый флогистон. Именно этим объясняли, в частности, «флогистирующее» действие угля, — его способность восстанавливать металлы из «известей» и руд. Поздние флогистики, Реомюр, Бергман и другие, уже начали понимать, что уголь представляет собой элементарное вещество. Однако впервые таковым «чистый уголь» был признан Антуаном Лавуазье, исследовавшим процесс сжигания в воздухе и кислороде угля и других веществ. В книге Гитона де Морво, Лавуазье, Бертолле и Фуркруа «Метод химической номенклатуры» (1787) появилось название «углерод» (carbone) вместо французского «чистый уголь» (charbone pur). Под этим же названием углерод фигурирует в «Таблице простых тел» в «Элементарном учебнике химии» Лавуазье.

В 1791 году английский химик Теннант первым получил свободный углерод; он пропускал пары фосфора над прокалённым мелом, в результате чего образовывались фосфат кальция и углерод. То, что алмаз при сильном нагревании сгорает без остатка, было известно давно. Ещё в 1751 год германский император Франц I согласился дать алмаз и рубин для опытов по сжиганию, после чего эти опыты даже вошли в моду. Оказалось, что сгорает лишь алмаз, а рубин (окись алюминия с примесью хрома) выдерживает без повреждения длительное нагревание в фокусе зажигательной линзы. Лавуазье поставил новый опыт по сжиганию алмаза с помощью большой зажигательной машины и пришёл к выводу, что алмаз представляет собой кристаллический углерод. Второй аллотроп углерода — графит — в алхимическом периоде считался видоизменённым свинцовым блеском и назывался plumbago; только в 1740 г. Потт обнаружил отсутствие в графите какой-либо примеси свинца. Шееле исследовал графит (1779) и, будучи флогистиком, счёл его сернистым телом особого рода, особым минеральным углём, содержащим связанную «воздушную кислоту» (СО2) и большое количество флогистона.

Двадцать лет спустя Гитон де Морво путём осторожного нагревания превратил алмаз в графит, а затем в угольную кислоту.

Происхождение названия

В XVII—XIX веках в русской химической и специализированной литературе иногда применялся термин «углетвор» (Шлаттер, 1763; Шерер, 1807; Севергин, 1815); с 1824 года Соловьёв ввёл название «углерод». Соединения углерода имеют в названии часть карбо(н)

— от лат. carbō (род. п.
carbōnis
) «уголь».

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]