Как выбрать технологию производства пластиковых изделий: сравнение методов


В статье мы расскажем об основных технологиях изготовления пластиковых изделий и поможем вам выбрать наиболее подходящий для ваших целей метод.

Сегодня технология производства пластмассовых изделий доступна не только большим промышленным компаниям с огромными тиражами, но и обычным людям, изобретателям и бизнесменам. Технологии производства позволяют создавать пластиковые детали или корпуса для любых изделий в любом количестве, что открывает новые просторы для изобретательства, творчества или бизнеса. Например, в прошлой статье мы писали о производстве корпусов для квадрокоптеров как готовой бизнес-идeе, которой практически никто не занимается в Украине.

Существует три технологии изготовления пластиковых изделий. Все эти технологии позволяют создавать высококачественные изделия из пластика, но имеют некоторые различия. Рассмотрим подробно каждую из технологий, ее преимущества, недостатки и сферы применения. Наша статья поможет вам выбрать технологию производства пластмассовых изделий конкретно для вашего случая.

Производству пластикового корпуса предшествует создание 3D-модели. Подробнее об услуге моделирования корпусов для приборов вы можете узнать здесь.

Технология производства пластмассовых изделий при помощи 3D-печати

Сегодня технология 3D-печати приобрела невероятную популярность не только в мире, но и в Украине. При помощи 3D-принтера можно сравнительно быстро получить готовое изделие и использовать его в качестве прототипа, для выставки или презентации, в научной деятельности при моделировании разных процессов. Распечатанные изделия позволяют полностью оценить функциональность будущего пластикового корпуса без существенных затрат на запуск многосерийного производства. С этой точки зрения технология производства пластмассовых изделий при помощи 3D-печати является незаменимым средством для оценки рентабельности продукта. К тому же, на этом этапе можно легко заметить изъяны или недостатки функционала предмета и переделать 3D-модель.

Наиболее распространенным методом 3D-печати является FDM технология. Этот метод используется практически во всех сферах производства. Печать осуществляется послойно путем поступления материала (полимерной нити) в сопло-дозатор. FDM технология ограничивается размерами принтера, но возможно создание нескольких деталей изделия с их последующим склеиванием. При использовании этой технологии необходимо создавать специальные подпорки, если в изделии есть большие углы наклона. После печати эти подпорки убираются. Кроме того, широко применяются технологии SLS (лазерное спекание порошка) и SLA (лазерное спекание жидкого фотополимера). В зависимости от используемых материалов, есть возможность получения корпуса из разных видов пластика любого цвета.

Обращайтесь в компанию KLONA за услугой 3D-печати. Мы поможет вам подобрать самый подходящий способ 3D-печати, выберем материал, который подойдет для вашего изделия, и оборудование для реализации вашего проекта.

3D-печать относится к штучному производству пластиковых изделий, так как является идеальным вариантом производства корпусов или деталей в маленьком тираже (до 20 шт.).

Преимущества производства изделий путем 3D-печати

  1. Нет подготовительных этапов: сразу после получения 3D-модели, ее можно отправлять на печать в принтер.
  2. Очень простой метод, который не требует дополнительного оборудования.
  3. Позволяет добиться довольно высокой точности изделия, которая зависит от применяемого принтера.
  4. Большой выбор материалов и методов печати позволяет реализовать любой проект.

Недостатки технологии 3D-печати

  • низкая производительность: печать одного изделия может занять несколько часов, когда в других методах изготовления пластиковых корпусов – от нескольких секунд;
  • ограниченность по габаритам получаемых изделий: если корпус очень большой и должен быть цельным, то 3D-печать может не подойти для такого запроса в связи с ограниченными размерами принтера.

При создании пластиковых корпусов очень важна разработка промышленного дизайна изделия. Промышленные дизайнеры компании KLONAсоздают максимально удобные и функциональные корпуса с точки зрения технологии производства и удобства использования. Рекомендации по дизайну корпусов вы можете узнать здесь.

Сварка пластмасс

Термопласты всех видов хорошо поддаются сварке. Высокоэластичные пластмассы (полиолефины, полиамиды, полиметилметакрилаты) сваривают контактной сваркой без применения присадочного материала. Тонкие листы и пленки сваривают внахлестку пропусканием пленок между роликами, подогреваемыми электрическим током. Плиты, бруски и другие подобные изделия сваривают встык. Свариваемые поверхности сжимают под давлением 0,1—0,3 МПа; стык разогревают токами высокой частоты или ультразвуком. Прочность сварного стыка близка к прочности самого материала.

Пластмассы меньшей пластичности (винипласты, фторопласты) сваривают с применением присадочного прутка, полученного из того же материала, что и свариваемые детали, но с добавкой пластификатора. Соединяемые кромки разделывают для образования сварочной ванны. Сварку производят струей горячего воздуха. Прочность сварного шва составляет 70—80% прочности самого материала.

Разработаны также способы сварки термореактивных и отверждающих пластмасс, а также стекловолокнитов.

Пластмассы хорошо склеиваются с помощью клеев, представляющих собой раствор данного полимера в соответствующем растворителе. Некоторые клеи (ацетат поливинила, фенолнеопреновые, на основе модифицированных эпоксидов и др.) обладают широкой универсальностью по отношению к склеиваемым материалам. Этими клеями можно склеивать пластмассы с металлом, стеклом, керамикой и т. д.

Технология производства изделий из пластмасс: литье в силиконовые формы

Этот способ относится к мелкосерийному производству и лучше всего подходит для изготовления небольшой партии изделий (от 20 до 1000 штук).

Для изготовления силиконовых форм необходима мастер-модель – прототип будущего изделия. В качестве мастер-модели можно использовать готовый пластиковый корпус или напечатанный на 3D-принтере.

После получения мастер-модели можно приступать к изготовлению обратной силиконовой формы. При помощи клейкой ленты отмечаются линии разъема формы и закрываются отверстия. Внутри размещается литниковая система для подачи силикона и монтируется опалубка. Эта технология производства пластмассового изделия состоит в заливке высококачественного дегазированного силикона в опалубку, внутри которой находится прототип. После этого происходит застывание силикона и форму можно использовать для серийного производства. Процесс изготовления силиконовой формы составляет примерно сутки.

Разогретый пластик заливается в силиконовую форму, где вакуумная среда обеспечивает удаление пузырьков газа и воздуха, которые образовываются при смешивании пластика с растворителем. После застывания пластика форма готова к следующей отливке. Возможно существенно повыcить производительность за счет одновременно использования нескольких силиконовых форм.

Преимущества метода литья в силиконовые формы

  1. Силикон идеально повторяет форму мастер-модели, что позволяет добиться высокой точности.
  2. Метод отличается сравнительно невысокой стоимостью при небольших тиражах.

Недостатки использования силиконовых форм

  • при помощи одной силиконовой формы можно получить до 20 готовых изделий в зависимости от ее стойкости;
  • ограниченность по габаритам получаемых изделий: силиконовые формы используют для получения мелких и средних деталей (до 30-40 см);
  • невысокая скорость производства (застывание пластика может составлять несколько часов, что позволяет получать всего 5-10 изделий из одной формы в день);
  • ограниченность конструкции – минимальная толщина пластиковых изделий должна составлять 0,1 мм.

Формование стеклопластов

Малогабаритные изделия из стеклопластов получают горячим прессованием в металлических формах. Для изготовления крупногабаритных изделий этот способ неприменим, так как требует мощного прессового оборудования и изготовления дорогостоящих и громоздких пресс-форм.

Крупногабаритные оболочковые конструкции чаще всего изготовляют методом набрызгивания на модель приведенного в вязкотекучее состояние пластика вместе со стеклянным волокном. Пластик и нарубленное волокно подают в нужной пропорции в распылитель. Выходящую из распылителя струю наносят на модель до образования слоя нужной толщины.

Позитивные модели, воспроизводящие внутренний контур изделия, применяют в случаях, когда надо получить гладкую и точную внутреннюю поверхность. Негативные модели, воспроизводящие наружный контур изделия, применяют для получения чистой и точной наружной поверхности.

При изготовлении изделий из пластиков холодного отверждения, модели делают из дерева, гипса, цемента, а также из термореактивных пластиков. При горячем отверждении применяют металлические подогреваемые модели. Поверхность нанесенного на модель слоя уплотняют прокатыванием роликами или опрессовкой сжатым воздухом через эластичный чехол из термостойкой резины или упругого силикопласта. После отверждения поверхность изделия зачищают, грунтуют и покрывают отделочным синтетическим лаком.

Точность размеров изделий, получаемых методом набрызгивания, невелика. У крупногабаритных деталей разность в размерах может достигать нескольких миллиметров. Прочность таких изделий уступает прочности изделий, прессуемых под высоким давлением.

Для изготовления полых деталей, имеющих форму тел вращения (трубы, конусы и т. д.), применяют метод намотки на вращающуюся оправку непрерывных прядей стеклянного волокна, пропитанных синтетиком. Прядепитатель устанавливают на суппорте, совершающем возвратно-поступательное движение относительно оправки. Намотку обычно выполняют наперекрест несколькими слоями. Наматываемые слои уплотняют роликами.

При изготовлении высокопрочных плит с ориентированным волокном намотку производят на барабан большого диаметра, разрезают еще неотвердевшую обмотку по образующей, расправляют и подвергают прессованию в плоских или фигурных штампах.

Технология производства пластмассовых изделий при помощи литья пластика под давлением

Этот метод подходит для многосерийного производства (от 1000 деталей) пластиковых корпусов. При литье пластика под давлением можно получать изделия сложной конфигурации из разных материалов (полимеров, металла и пр.). Технология состоит в литье разогретого материала под давлением в пресс-формы.

Пресс-форма – это устройство, точно повторяющее конструкцию будущего изделия. Высокое давление необходимо для того, чтобы пластик или металл заполнил все маленькие отверстия и углубления в пресс-форме. Неотъемлемым этапом изготовления пресс-формы является проектирование пресс-форм. Это гораздо сложнее, чем создание силиконовой формы.

Услугу проектирования пресс-формы для вашего изделия вы можете заказать в компании KLONA. Наши моделлеры имеют навыки в проектировании пресс-форм для корпусов сложной конфигурации. Подробнее об услуге читайте здесь.

Пресс-формы изготавливают из высококачественного металла на основе 3D-модели. Они отличаются высокой долговечностью, прочностью и точностью. Пресс-формы используются во всех видах промышленности для получения пластиковых, металлических и прочих литьевых изделий.

Преимущества производства методом литья под давлением

  1. Невысокая себестоимость изделий при больших тиражах.
  2. Нет ограничений в конфигурации пластиковых изделий.
  3. Идентичность всех изделий и низкий процент бракованных изделий.
  4. Долговечность пресс-форм (компания KLONAпредоставляет гарантию на пресс-формы на весь период сотрудничества).
  5. Одна пресс-форма может производить неограниченное количество изделий (любую изношенную деталь можно заменить новой). К тому же, существуют многоместные пресс-формы, которые позволяют производить десятки изделий за раз (например, колпачков для ручек).
  6. Высокая производительность: формирование и остывание одного корпуса происходит меньше чем за одну минуту (в зависимости от конфигурации может составлять от 5 секунд). Подробнее о видах пресс-форм читайте здесь.


Недостатки технологии серийного производства при изготовлении пресс-форм

  • процесс проектирования пресс-форм может занимать несколько недель, что существенно оттягивает запуск производства;
  • производство и проектирование пресс-формы даже для маленького пластмассового корпуса потребует больших затрат на старте производства.

Экструзия

Экструзионное формование применяют для изготовления из термопластов прутков, труб, шлангов, плит, пленок, фасонных профилей (поручней, плинтусов и т. д.). Процесс осуществляется на шнековых прессах непрерывного действия (экструдерах). Литьевая масса подается через загрузочный бункер в обогреваемый цилиндр шнека, подхватывается витками шнека (в свою очередь подогреваемого) и перемещается вдоль цилиндра, подвергаясь перемешиванию и уплотнению. Уплотнение массы достигается уменьшением шага или высоты витков шнека. На выходном конце цилиндра устанавливают фильеру с отверстием, соответствующим форме поперечного сечения изделия. Отформованное изделие, выходящее непрерывным жгутом из фильеры, охлаждается. После затвердевания его режут на куски необходимой длины.

В последнее время для подогрева литьевой массы используют тепло, возникающее в результате трения массы о стенки цилиндра и витки шнека («адиабатическое экструдирование»). При этом методе упрощается конструкция пресса и повышается экономичность процесса.

Метод экструзии широко применяют для нанесения изолирующих оболочек на проводники, кабели и т. д. Проводники, подлежащие покрытию, подаются из бунта через центральное отверстие в шнеке и в фильере обволакиваются литьевой массой.

Для изготовления пленок на выходном конце пресса устанавливают угловую головку. Заготовка выходит из фильеры в виде тонкостенной трубы, поворачивается под углом 90°, раздувается сжатым воздухом до получения стенок необходимой толщины и поступает в клиновидный зазор между двумя бесконечными лентами, где сплющивается. Образующаяся двойная лента подается вытяжными валками на разрезание.

Из труб, получаемых экструзией, изготовляют (методом раздува в формах) пустотелые изделия (флаконы, бутылки, фляги и пр.). Днище изделий заваривают.

Из чего делают пластики?

Исходным сырьём для подавляющего большинства видов пластиков служат уголь, природный газ и нефть. Из них путём химических реакций выделяют простые (низкомолекулярные) газообразные вещества – этилен, бензол, фенол, ацетилен и др., которые затем в ходе реакций полимеризации, поликонденсации и полиприсоединения превращаются в синтетические полимеры. Превосходные свойства полимеров объясняются наличием высокомолекулярных связей с большим числом исходных (первичных) молекул.

Некоторые этапы производства полимеров представляют собой сложные и чрезвычайно опасные для окружающей среды процессы, поэтому производство пластиков становится доступным лишь на высоком технологическом уровне. При этом конечные продукты, т.е. пластмассы, как правило, абсолютно нейтральны и не оказывают никакого негативного воздействия на здоровье людей.

Технологические процессы производства полимерных материалов и пластмасс

Полимерами называются продукты химического соединения одинаковых молекул в виде многократно повторяющихся звеньев. Молекулы полимеров состоят из десятков и сотен тысяч атомов. К полимерам относятся:
целлюлоза, каучуки, пластмассы, химические волокна, лаки, клеи, пленки, различные смолы и др.
По своему происхождению полимерные материалы делятся на природные и синтетические. К природным относятся: крахмал, канифоли, белки, натуральный каучук и др. Основную массу полимерных материалов, применяемых в современной промышленности, составляют синтетические полимеры. Они получаются с помощью реакций полимеризации (без образования побочных продуктов), например получение полиэтилена, и поликонденсации (с образованием побочных продуктов), например получение фенолформальдегидных смол.

Получение полимеров по реакции полимеризации осуществляется следующим образом. В реакцию полимеризации вступают органические вещества, содержащие в молекуле двойные связи. Под воздействием света, тепла, давления или в присутствии катализаторов молекулы веществ за счет раскрытия двойных связей соединяются друг с другом, образуя полимер.

При получении полимеров по реакции поликонденсации в реакцию вступают два мономерных продукта с образованием полимера и побочного продукта.

Среди полимерных материалов особое место принадлежит пластмассам. Это материал, в состав которого в качестве основного компонента входят высокомолекулярные синтетические смолы. Их получают путем химического синтеза простейших веществ, извлекаемых из столь доступного сырья, как уголь, известь, воздух, нефть.

Главное преимущество использования пластмасс по сравнению с другими материалами – это простота переработки их в изделии. Присущие им пластические свойства позволяют с помощью пресс-автоматов, автоматов для литья и др. изготавливать в час сотни деталей сложных конфигураций. При этом расход материалов минимальный (практически нет отходов), уменьшается количество станков и обслуживающего персонала, сокращается расход электроэнергии. Ввиду этого требуется значительно меньше капиталовложений в организацию производства изделий из пластмасс.

Методы переработки пластмасс и изготовления пластмассовых изделий зависят от отношения пластмасс к температуре. Выделяют термопластичные и термореактивные пластмассы.

К термореактивным относятся пластмассы, которые при нагревании до определенной температуры размягчаются, а затем переходят необратимо в неплавкое и нерастворимое состояние. Термореактивные пластмассы после отвердевания не могут быть переработаны повторно и поэтому называются необратимыми. Примером термореактивных пластмасс могут служить фенопласты. Изделия из термореактивной пластмассы получают методом прессования в пресс-формах. Последние имеют внутреннюю полость, соответствующую форме и размерам будущего изделия, и обычно состоят из двух разъемных частей – матрицы и пуансона. Матрица укрепляется на нижней плите пресса, пуансон – на подвижном ползуне пресса. Отмеренное количество пресс-порошка, нагретого до 90 – 120 °С, подается в матрицу, имеющую температуру, необходимую для прессования. Под воздействием тепла от нагретой матрицы полимер размягчается и приобретает необходимую пластичность. Под действием пуансона размягченный материал заполняет полость пресс-формы. При этом в термореактивной смоле проходят сложные химические превращения, приводящие к образованию неплавкого материала. Затвердевание изделия происходит в форме, находящейся под давлением. После определенной выдержки изделие извлекается из пресс-формы. Температура, давление и время прессования определяются свойствами прессуемых материалов. Кроме того, для переработки термореактивных пластмасс применяют и метод выдавливания, или экструзию. Этим методом получают изделия плоской (листы, пленки) или цилиндрической (стержни, трубы) формы.

Для получения изделий из термопластичной пластмассы применяют следующие способы: литье под давлением, экструзию (выдавливание) и формование из листа

. Их применение обусловлено термопластичностью материала.

Наиболее применимый способ переработки термопластичных пластмасс – литье под давлением. Выполняется на специальных литьевых машинах. Порошкообразный или гранулированный полимер подается в обогреваемый цилиндр литьевой машины, где и расплавляется. При охлаждении термопластичный полимер застывает и приобретает вид детали.

Также при переработке пластмасс в изделия применяют формовку, штамповку, механическую обработку резанием, выдувание пустотелых изделий. Все способы характеризуются коротким технологическим циклом, небольшими затратами труда и легкостью автоматизации.

Синтетические волокна получают из синтетических высокомолекулярных смол. Большую группу составляют полиамидные волокна – капрон, нейлон. Они характеризуются высокой прочностью, эластичностью, стойкостью к действию щелочи, электроизоляционной стойкостью. К группе полиэфирных волокон относится лавсан. Он используется для производства тканей, трикотажных изделий, электроизоляционных материалов. Отличается высокой механической прочностью.

Технологический процесс получения химических волокон включает следующие стадии:

1) приготовление прядильной массы;

2) формование волокна;

Отделка.

Каучук – характерный представитель высокомолекулярных (полимерных) соединений. Он является основной составной частью резины, бывает растительного происхождения (натуральный) и синтетический. Наиболее широкое применение в промышленности получил синтетический каучук. Его химический состав и строение, а также физические свойства могут быть весьма разнообразны и сильно отличаться от свойств натурального каучука, в чем и заключается преимущество синтетических каучуков.

Основным сырьем для производства синтетических каучуков являются попутные газы нефтепереработки, этиловый спирт и ацетилен. Основные методы получения – полимеризация и поликонденсация. При переработке каучуки превращают в резину. Она характеризуется высокой эластичностью, сопротивлением к истиранию, изгибам, обладает газо- и водонепроницаемостью, высокими электроизоляционными свойствами, стойкостью к агрессивным средам.

Резину получают добавлением к каучуку ряда компонентов (ингредиентов). Затем эту смесь подвергают вулканизации. Вулканизация заключается в образовании мостиков между линейными молекулами каучука и получении трехмерной пространственной молекулярной структуры. Такая структура приводит к повышению термической стойкости и прочности материала, к уменьшению его растворимости и увеличению химической стойкости. Наиболее распространенным вулканизатором является сера, она же определяет и твердость резины. Также вводятся различные наполнители как для улучшения свойств (сажа, цинковые белила, каолин, противостарители), так и для удешевления (мел, тальк).

Резиновые изделия изготавливают: методом шприцевания, штамповкой, литьем под давлением, окунанием моделей в латекс и др. Разделяют резиновые изделия по назначению и условиям эксплуатации.

В химической промышленности наибольшие расходы приходятся на сырье и составляют в среднем 60 – 70 % себестоимости, а на топливо и энергию – около 10 %. Амортизационные отчисления составляют 3 – 4 %, заработная плата основных производственных рабочих колеблется от 3 до 20 % себестоимости продукции и зависит от типа производства.

megaobuchalka.ru

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]