Использование углеродистых сталей широко распространено в строительстве и промышленности. Группа так называемого технического железа имеет множество преимуществ, обуславливающих повышенные эксплуатационные качества конечных изделий и конструкций. Наряду с оптимальными характеристиками прочности и стойкости к нагрузкам, такие сплавы отличаются и гибкими динамическими свойствами. В частности, доэвтектоидная сталь, которая также имеет в составе немалый процент углеродистых смесей, ценится за высокую пластичность. Но и это не все преимущества данной разновидности высокопрочного железа.
Доэвтектоидные и эвтектоидные стали
Стали, содержащие от 0,025 до 0,8% углерода, называются доэвтектоидными
.
Структура этих сталей состоит из феррита (светлый фон) и перлита (темные зерна). Количество перлита увеличивается, а феррита уменьшается пропорционально увеличению содержания углерода (рис.5) в соответствие с диаграммой состояния (рис.1).
а | б | в |
Феррит + перлит – a + (a+Fe3C) — 0,2-0,3% С | Перлит + феррит – (a+Fe3C)+ a — 0,4-0,5 % С | Перлит + феррит – (a+Fe3C) + a 0,5-0,7% С |
Рис.5. Микроструктура доэвтектоидных сталей:
а
– сталь 20,
б
– сталь 45,
в
– сталь 60
Поэтому, считая, что феррит углерод практически не растворяет, а наличие в структуре 100% перлита соответствует 0,81% С, можно найти содержание углерода
в любой доэвтэктоидной стали, определив с помощью микроскопа количественное соотношениемежду структурными составляющими и решая затем простую пропорцию.
где А — количество перлита встали, определенное визуально с помощью микроскопа.
При содержании 0,8% С сталь называется эвтектоидной
и состоит из одного перлита.
Твердость и предел прочности эвтектоидной стали выше, чем доэвтектидной, а пластичность ниже.
Заэвтектоидные стали
Стали с содержанием углерода от 0,81 до 2% называются заэвтектоидными
, ихструктурасостоит из
перлита и вторичного цементита
.
Цементит — самая хрупкая и твердая (НВ>800) структурная составляющая. Пластичность цементита ничтожно мала и практически равна нулю, что, вероятно, является следствием сложного строения его кристаллической решетки. Кристаллическая структура цементита очень сложна. Есть много различных способов ее изображения, один из наиболее удачных показан на рис. 6.
Цементитная сетка в структуре стали снижает ее пластичность, а твердость — увеличивает. Поэтому с возрастанием количества вторичного цементита пропорционально увеличению концентрации в ней углерода твердость ее повышается, а пластичность падает.
Рис. 6. Кристаллическая структура цементита
Цементит содержит 6,67% углерода, является самой хрупкой и твердой (НВ до 800) структурной составляющей железоуглеродистых сплавов.
В заэвтектоидной стали вторичный цементит обычно расположен в виде светлой сетки или светлых зерен (цепочки) по границам перлитных зерен или в виде игл (рис.7).
Рис.7. Микроструктура заэвтектоидной стали У12 — 1,2 % С
(перлит + цементит вторичный)
а – цементит вторичный зернистый; б – в виде сетки по границам зерен
В сталях, содержащих углерод несколько меньше 0,81%, в виде сетки по границам зерен перлита может также выделиться феррит. При обычном травлении 4%-ным раствором азотной кислоты эта сетка также получается светлой. Для выяснения, является эта сетка ферритной или цементитной, микрошлиф подвергают травлению пикратом натрия.
Если сетка после травления осталась светлой, то это феррит и, следовательно, сталь является доэвтектоидной; если сетка потемнеет, то это цементит, и сталь является заэвтектоидной.
Вторичный цементит в заэвтектоидиой стали занимает незначительную по величине площадь, определить которую на глаз затруднительно. Поэтому методом, которым определяют содержание углерода в доэвтектоидных сталях, для заэвтектоидных — не пользуются.
Выделение вторичного цементита по границам зерен аустенита и цементита перлита в виде пластинок нежелательно, так как такая структура обладает повышенной хрупкостью, плохо обрабатывается резанием и после окончательной термической обработки готовые детали (инструмент) будут иметь пониженные механические свойства, главным образом малую пластичность и ударную вязкость. Поэтому стремятся получать цементит в виде мелких зерен округлой формы (шарики). Структура зернистого перлита является исходной структурой для инструментальных сталей (рис.4).
Таким образом, свойства стали после медленного охлаждения определяются свойствами ее структурных составляющих и их количественным соотношением. Структура же стали состоит из перлита с избыточным или ферритом, или цементитом, в зависимости от количества в ней углерода. Следовательно, именно содержание углерода в стали определяет ее механические и технологические свойства — прочность, твердость, пластичность, вязкость.
Количество цементита в структуре стали возрастает прямо пропорционально содержанию углерода, а как указывалось выше, твердость цементита НВ>800 (8000-8500 МПа) на порядок больше твердости феррита НВ 45-80 (450-800 МПа). Кроме того, частицы цементита повышают сопротивление движению дислокаций, т.е. повышают сопротивление деформации, уменьшают пластичность и вязкость. Вследствие этого с увеличением в стали содержания углерода до 1,0% возрастают твердость, прочность, предел текучести и понижаются показатели пластичности (относительное удлинение и сужение) и ударная вязкость (рис.6).
При содержании углерода свыше 1,0-1,1% твердость стали в отожженном состоянии возрастает, а прочность уменьшается из-за наличия вторичного цементита, образующего сплошную сетку и вызывающего хрупкое преждевременное разрушение.
С увеличением содержания углерода меняется структура стали, увеличивается количество цементита и уменьшается количество феррита. Это приводит соответственно к изменению свойств стали.
Pиc. 8. Влияние углерода на механические свойства стали
Чем больше углерода в стали, тем выше твердость и прочность, но ниже пластичность
(рис.8).
Механические свойства стали зависят также от формы и размеров феррито-цементитной смеси.
Чем дисперсней (тоньше) частички феррито-цементитной смеси, тем выше твердость и прочность стали.
Зернистая форма цементита по сравнению с пластинчатой при одинаковой твердости обладает
более высокой пластичностью и ударной вязкостью.
С повышением содержания углерода
в стали:
— снижается свариваемость, углерод способствует также образованию трещин и пор в процессе сварки в сварном шве,
Цементит: формы существования
Так называют соединение углерода и железа. Это компонент чугуна и некоторых сталей. В него входит 6,67% углерода.
В его кристалл входит несколько октаэдров, они расположены друг по отношению к другу с некоторым углом. Внутри каждого из них расположен атом углерода. В результате такого построения получается следующая картина – один атом вступает в связь с несколькими атомами железа, а железо в свою очередь связано с тремя атомами этого элемента.
Кристаллическая решетка цементита
У этого вещества имеются все свойства, которые присущи металлам – электропроводность, своеобразным блеском, высокая теплопроводность. То есть, смесь железа и углерода, ведет себя как металл. Этот материал обладает определенной хрупкостью. Большая часть его свойств определена сложным строением кристаллической решетки.
Этот материал плавится при 1600 градусах Цельсия. Но на этот счет существует несколько мнений, одни исследователи считают, что его температура плавления лежит в диапазоне от 1200 до 1450, другие определяют, что верхний уровень равен 1300 °С.
Первичный цементит
Металлурги разделяют три типа этого вещества – первичный, вторичный, третичный.
Диаграмма железо-цементит
Первичный, получается из жидкости при закалке сплавов, которые содержат в себе 5,5% углерода. Первичный имеет форму в виде крупных пластин.
Вторичный
Этот элемент получается из аустенита при охлаждении последнего. На диаграмме этот процесс этот процесс можно видеть по диаграмме Fe – C. Цементит представлен в виде сетки, размещенной по границам зерен.
Третичный
Этот тип, является производным от феррита. Он имеет форму иголок.
В металлургии существуют и другие формы цементита, например, цементит Стеда и пр.
Другие структурные составляющие в системе железо углерод
Перлит
Перлит – это механическая смесь, которая состоит из феррита и цементита. Ледебурит представляет собой переменный раствор.
Перлит
При температуре от 1130 и до 723 °С в его состав входят аустенит и цементит. При более низких температурах он состоит из аустенит заменяет феррит.
Структура — эвтектоидная сталь
Структура эвтектоидной стали состоит из перлита. [1]
Структура эвтектоидной стали в крайних ее состояниях — равновесном ( перлитном) и неравновесном ( аустенитном) — известна, в первом получается явно выраженный пластинчатый перлит ( фиг. [2]
Из рассмотрения структур указанных трех видов чугуна можно заключить, что их металлическая основа похожа на структуру эвтектоидной стали , доэвтектоидной стали и железа. Следовательно, по структуре чугуны отличаются от стали тем, что в чугунах имеются графитовые включения, предопределяющие и специфические свойства чугунов. [3]
Из рассмотрения структур указанных трех видов чугуна можно заключить, что их металлическая основа похожа на структуру эвтектоидной стали , доэвтектоидной стали и железа. [5]
Из рассмотрения структур указанных трех видо, чугуна можно заключить, что их металлическая основа похожа на структуру эвтектоидной стали , доэвтектоидной стали и желези. [7]
Превращения, происходящие в сплавах железа с углеродом, обратимы. Если структура эвтектоидной стали ( 0 8 % С) при охлаждении ниже 723 С превращается из аустенита в перлит, то в процессе нагревания при 723 С произойдет обратное превращение — перлита в аустенит. В обратном порядке происходят при нагревании структурные превращения в до — и заэвтектоидных сталях. [8]
Из диаграммы следует, что свойства сорбита и тростита занимают промежуточное положение между свойствами перлита и мартенсита. Свойства структур доэвтек-тоидных и заэвтектоидных сталей отличаются от свойств тех же структур эвтектоидной стали в зависимости от содержания С. [10]
Сталь с 0 8 % С, содержащая один только эвтектоид, называется эвтектоидной сталью. Эвтектоиду стали дано специальное название — перлит. Структура эвтектоидной стали показана на фиг. Она состоит из одного перлита; в этом случае все поле шлифа заполнено перлитом. [11]
СС ( ниже верхней критической точки Ас3), и охлаждают со скоростью, превышающей критическую VK. Неполную закалку применяют для эвтектоидной и заэвтектоидной углеродистых сталей. Исходная структура заэвтектоидной стали состоит из перлита и вторичного цементита. При нагреве выше Асг происходит превращение перлита в аустенит ( П А), а цементит остается нерастворенным. При быстром охлаждении происходит превращение А — М, и в результате структура заэвтектоидной стали состоит из мартенсита, цементита и остаточного аустенита. Наличие в структуре цементита повышает твердость и износоустойчивость стали. Структура закаленной эвтектоидной стали состоит из мартенсита и остаточного аустенита. [12]
Для лучшего уяснения диаграммы Fe-С проследим процесс охлаждения доэвтектоидного сплава состава / ( фиг. По мере охлаждения в точке а сплав начинает затвердевать, и из жидкого сплава выпадают кристаллы аустенита. Между точками а и б количество жидкости будет постепенно уменьшаться, и в точке б сплав окончательно затвердеет, получив структуру аустенита. На этом заканчивается первичная кристаллизация. До точки в аустенит охлаждается без каких-либо изменений. В точке в на линии GS начнется вторичная кристаллизация, связанная с выделением феррита из аустенита и переход у-железа в а-железо. Выделение свободного феррита из твердого раствора приводит к увеличению количества углерода в остающемся аустените; в точке г содержание углерода составляет 0 8 % и аустенит, имеющий эвтектоидную концентрацию, распадается с образованием перлита. Ниже точки г сплав при дальнейшем охлаждении никаких изменений не претерпевает. Сплавы, содержащие 0 045 — 1 45 % углерода, относятся к сталям. Стали, содержащие менее 0 8 % углерода, будут охлаждаться аналогично рассмотренному сплаву, и структура таких сталей при медленном охлаждении будет состоять из феррита и перлита. Структура эвтектоидной стали состоит из перлита, а заэвтектоидной — из перлита и цементита. [13]
Источник
Компоненты в системе железо углерод
Аустенит
Атомы размещается в гранецентрированной ячейке. Твердость аустенита имеет твердость 200 … 250 единиц по Бринеллю. Кроме того у него хорошая пластичность и он отличается парамагнитностью.
Железо
Железо – это материал, относящийся к металлам. Его натуральный цвет – серебристо-серый. В чистом виде он очень пластичен. Его удельный вес составляет 7,86 г/куб. см. Температура плавления составляет 1539 °C. На практике чаще всего применяют техническое железо, в составе которого присутствуют следующие примеси – марганец, кремний и многие другие. Массовая доля примесей не превышает 0,1%.
Железо
У железа есть такое свойство как полиформизм. То есть, при одном и том же химическом составе, это вещество может иметь разную структуру кристаллической решетки и соответственно разные свойства. Модификации железа называют соответственно – Б, Г, Д. Все эти модификации существуют при разных условиях. Например, тип Б, может существовать только при температуре 911 °С. Тип Г может существовать в диапазоне от 911 до 1392 °С. Тип Д существует в диапазоне от 1392 до 1539 °С.
Каждый из типов обладает своей формой кристаллической решеткой, например, у типа Б решетка представляет собой куб, решетка типа Г имеет гранецентрированную кубическую форму. Решетка типа Д, имеет форму объемно центрированного куба.
Еще одно свойство состоит в том, что при температуре ниже 768 железо ферримагнитно, а при ее повышении это свойство теряется.
Точки полиморфной и магнитной трансформации называют критическими. На таблице они обозначены следующим образом – А2, А3, А4. Цифровые индексы показывают тип трансформации. Для более полного различия превращения железа из одного вида в другой к обозначению добавляют индексы с и r. Первый говорит о нагреве, второй об охлаждении.
Полиморфные модификации железа
При высоких параметрах пластичности, железо не обладает высокой твердостью, по шкале Бринелля она равна 80 единиц.
Железо имеет возможность образовывать твердые растворы. Их можно разделить на две группы – раствор замещения и внедрения. Первые состоят их железа и других металлов, вторые из железа и углерода, водорода и азота.
Углерод
Другой компонент системы – углерод. Это – неметалл и он обладает тремя модификациями в виде алмаза, графита и угля. Он плавится при 3500 °С.
Аллотропные модификации углерода
В сплаве железа, этот элемент находится в виде твердого раствора, его называют цементит или в виде графита. В таком виде он присутствует в сером чугуне. Графит, не отличается ни пластичностью, ни прочностью.
Цементит
Доля углерода составляет 6,67%. Он обладает высокой твердостью – 800 НВ, но при этом у него отсутствует пластичность. Полиморфными свойствами не обладает.
Он обладает следующим свойством – при формировании раствора замещения, углерод может быть заменен на атомы других веществ, например, на хром или никель. Такой раствор получил название легированного раствора.
Цементит
Он не обладает устойчивостью, при наличии некоторых условий он может разлагаться, при этом происходит трансформация углерода в графит. Это свойство нашло применение при образовании чугунов.
Кстати, в жидком состоянии, железо может растворять в себе примеси, при этом образуя, однородная масса.
Феррит
Так называют твердый раствор, при котором происходит внедрение углерода в железо.
Он растворяется с определенной переменностью, при нормальной (комнатной) температуре объем углерода лежит в пределах 0,006%, при 727 °С, то концентрация углерода составит 0,02%. По достижении 1392 °С образуется феррит.
Феррит
Содержание углерода составит 0,1%. Его атомы размещаются в дефектных узлах решетки.
Феррит по своим параметрам близок к железу.
Доэвтектоидная сталь: структура, свойства, производство и применение
Использование углеродистых сталей широко распространено в строительстве и промышленности. Группа так называемого технического железа имеет множество преимуществ, обуславливающих повышенные эксплуатационные качества конечных изделий и конструкций. Наряду с оптимальными характеристиками прочности и стойкости к нагрузкам, такие сплавы отличаются и гибкими динамическими свойствами. В частности, доэвтектоидная сталь, которая также имеет в составе немалый процент углеродистых смесей, ценится за высокую пластичность. Но и это не все преимущества данной разновидности высокопрочного железа.
Общие сведения о сплаве
Отличительным свойством стали является наличие в структуре специальных легированных примесей и углерода. Собственно, по содержанию углерода и определяют доэвтектоидный сплав. Здесь важно различать и классическую эвтектоидную, а также ледебуритную стали, которые имеют много общего с описываемой разновидностью технического железа. Если рассматривать структурный класс стали, то доэвтектоидный сплав будет относиться к эвтектоидам, но содержащим в составе легированные ферриты и перлиты. Принципиальным отличием от заэвтектоиднов является уровень углерода, находящийся ниже 0,8%. Превышение этого показателя позволяет относить сталь к полноценным эвтектоидам. В некотором роде противоположностью доэвтектоида является заэвтектоидная сталь, в которой помимо перлита также содержатся вторичные примеси карбидов. Таким образом, существует два основных фактора, позволяющих выделять доэвтектоидные сплавы из общей группы эвтектоидов. Во-первых, это относительно небольшое содержание углерода, а во-вторых, это особый набор примесей, основу которых составляет феррит.
Чтение диаграммы железо-углерод
Состав сплава с данным исходным содержанием углерода при заданной температуре мы можем увидеть, двигаясь по вертикальной линии, соответствующей содержанию углерода в сплаве.
Рассмотрим, например, область AEC. С ней соседствуют области аустенита AESG и жидкой фазы. Сплавы в ней состоят из жидкой фазы и образующегося твердого аустенита. Как определить концентрацию углерода в разных фазах для данного сплава? Рассмотрим для примера сплав с исходной концентрацией углерода 2,5% при температуре 1250°С.
Проведем из этой точки графика «2,5% C – 1250°С» горизонтальную прямую. Пересечение этой прямой с линией AE, граничащей с областью аустенита, покажет концентрацию углерода в аустените при данной температуре (~1.5%).
Пересечение этой же горизонтальной прямой с линией AС, граничащей с областью жидкой фазы, покажет концентрацию углерода в жидкой фазе при данной температуре (~3.5%).
Именно таким образом мы можем определить концентрацию углерода в фазах любого сплава при заданной температуре:
- в жидкой фазе и аустените в области AEC;
- в жидкой фазе в области CDF (концентрация углерода в цементите, конечно, постоянна – 6,67%);
- в аустените в области SEFK;
- в феррите в области QPKL;
- в феррите и аустените в области GPS.
Как видим, при концентрации углерода выше 2,14% насыщение охлаждаемого расплава углеродом всегда стремится к 4,3% (по линиям AC и DC) по мере приближения к температуре 1147°С (уровень ECF). Далее происходит превращение жидкости в ледебурит (эвтектику). Естественно, с этим же средним содержанием углерода.
По мере приближения к температуре 727°С (уровень PSK) концентрация углерода в аустените («свободном» и/или входящем в состав ледебурита) стремится к 0,8% (по линиям GS и ES). Далее происходит превращение аустенита в перлит (эвтектоид). Перлит, конечно, имеет среднее содержанием углерода 0,8%.
Технология изготовления
Общий технологический процесс изготовления доэвтектоидной стали схож с производством других сплавов. То есть используются примерно те же технические приемы, но в других конфигурациях. Особого внимания доэвтектоидная сталь требует в части получения ее специфической структуры. Для этого задействуется технология обеспечения распада аустенита на фоне охлаждения. В свою очередь, аустенит является комбинированной смесью, включающей тот же феррит и перлит. Посредством регуляции интенсивности нагрева и охлаждения технологи могут управлять дисперсностью данной добавки, что в конечном итоге сказывается на формировании тех или иных эксплуатационных качеств материала.
Однако показатель углерода, обеспечиваемого перлитом, остается на одном уровне. Хотя последующий отжиг может вносить коррективы в формирование микроструктуры, содержание углерода будет находиться в пределах 0,8%. Обязательным этапом в процессе становления структуры стали является и нормализация. Данная процедура требуется для фракционной оптимизации зерен того же аустенита. Иными словами, частицы феррита и перлита сокращаются до оптимальных размеров, что в дальнейшем улучшает технико-физические показатели стали. Это сложный процесс, в котором многое зависит от качества регуляции нагрева. Если превысить температурный режим, то вполне может быть обеспечен обратный эффект – увеличение зерен аустенита.
Отжиг стали
Практикуется использование нескольких методов отжига. Принципиально различаются техники полного и неполного отжига. В первом случае происходит интенсивный нагрев аустенита до критической температуры, после чего осуществляется нормализация посредством охлаждения. Тут же происходит распад аустенита. Как правило, полный отжиг сталей производится в режиме 700-800 °С. Термическая обработка на таком уровне как раз активизирует процессы распада элементов феррита. Скорость охлаждения тоже поддается регулировке, например, обслуживающий печь персонал может управлять дверцей камеры, закрывая или открывая ее. Новейшие модели изотермических печей в автоматическом режиме могут осуществлять замедленное охлаждение в соответствии с заданной программой.
Что касается неполного отжига, то он производится при нагреве с температурой выше 800 °С. Однако имеют место серьезные ограничения по времени удержания критического температурного воздействия. По этой причине происходит неполный отжиг, в результате которого феррит не исчезает. Следовательно, не устраняется и множество недостатков структуры будущего материала. Зачем же нужен такой отжиг сталей, если он не улучшает физические качества? На самом деле именно неполная термическая обработка позволяет сохранить мягкую структуру. Конечный материал, возможно, потребуется не в каждой сфере применения, характерной для углеродистых сталей как таковых, но зато позволит с легкостью произвести механическую обработку. Мягкий доэвтектоидный сплав без особых затруднений поддается резке и дешевле обходится в процессе изготовления.
Нормализация сплава
После обжига наступает черед процедур повышенной термической обработки. Выделяют операции нормализации и нагрева. В обоих случаях речь идет о термическом воздействии на заготовку, при которой температура может превышать 1000 °С. Но сама по себе нормализация доэвтектоидных сталей происходит уже после завершения термической обработки. На этом этапе начинается охлаждение в условиях спокойного воздуха, при котором происходит выдержка до полного формирования мелкозернистого аустенита. То есть нагрев является своего рода подготовительной операцией перед приведением сплава в нормализованное состояние. Если говорить о конкретных структурных изменениях, то чаще всего они выражаются в уменьшении размеров феррита и перлита, а также в повышении их твердости. Прочностные качества частиц повышаются в показателях по сравнению с аналогичными характеристиками, достигаемыми процедурами отжигов.
После нормализации может последовать еще одна процедура нагрева с долгой выдержкой. Затем заготовка охлаждается, причем этот этап может выполняться разными способами. Конечная доэвтектоидная сталь получается или на воздухе или в печи с медленным охлаждением. Как показывает практика, наиболее качественный сплав формируется с помощью проведения полной технологии нормализации.
Влияние температуры на структуру сплава
Вмешательство температуры в процесс формирования структуры стали начинается с момента превращения ферритно-цементитной массы в аустенит. Иными словами, перлит переходит в состояние функциональной смеси, которая отчасти и становится базой для образования высокопрочной стали. На следующем этапе термического воздействия закаленная сталь избавляется от избыточного феррита. Как уже отмечалось, не всегда от него избавляются полностью, как в случае неполного отжига. Но классический доэвтектоидный сплав все же предполагает устранение данного компонента аустенита. На следующей стадии происходит уже оптимизация имеющегося состава с расчетом на формирование оптимизированной структуры. То есть происходит уменьшение частиц сплава с обретением повышенных прочностных свойств.
Изотермическое превращение с переохлажденной смесью аустенитов может выполняться в разных режимах и уровень температуры – лишь один из параметров, которым управляет технолог. Также варьируются пиковые интервалы термического воздействия, скорость охлаждения и т. д. В зависимости от выбранного режима нормализации получается закаленная сталь с теми или иными технико-физическими характеристиками. Именно на данном этапе также есть возможность задать и особые эксплуатационные свойства. Ярким примером является сплав с мягкой структурой, получаемый с целью эффективной дальнейшей обработки. Но чаще всего производители все же ориентируются на нужды конечного потребителя и его требования к основным технико-эксплуатационным качествам металла.
Структура стали
Режим нормализации при температуре на уровне 700 °С обуславливает формирование структуры, в которой основу будут составлять зерна ферритов и перлитов. К слову, заэвтектоидные стали вместо феррита имеют в структуре цементит. При комнатной температуре в обычном состоянии отмечается и содержание избыточного феррита, хотя по мере увеличения углерода эта часть минимизируется. Важно подчеркнуть, что структура стали в небольшой степени зависит от содержания углерода. Он практически не влияет на поведение основных компонентов в процессе того же нагрева и почти весь концентрируется в перлите. Собственно, по перлиту и можно определить уровень содержания углеродистой смеси – как правило, это незначительная величина.
Интересен и другой структурный нюанс. Дело в том, что частицы перлита и феррита имеют одинаковый удельный вес. Это значит, что по количеству одного из этих компонентов в общей массе можно выяснить, какова занимаемая им совокупная площадь. Таким образом изучаются поверхности микрошлифа. В зависимости от того, в каком режиме производился нагрев доэвтектоидной стали, формируются и фракционные параметры частиц аустенита. Но это происходит практически в индивидуальном формате с образованием уникальных значений – другое дело, что стандартными остаются пределы по разным показателям.
Компоненты, фазы и структурные составляющие сплавов железа с углеродом
Железо
– пластичный металл серебристо-белого цвета. Твёрдость и прочность железа невысока ( НВ80
,
σв = 250 МПа)
при значительной пластичности
(δ=50%).
Температура плавления
– 1539º С
, плотность
7,83 г/см2
.
Углерод
встречается в природе в виде алмаза и графита.
Графит имеет сложную кристаллическую решётку. Он является непрочным материалом, но с увеличением температуры прочность графита значительно возрастает. Температура плавления графита
3500º С
. С углеродом железо образует
химические соединения
и
твёрдые растворы внедрения.
Химическое соединение железа с углеродом (карбид железа)
Fe3C
носит название цементит.
В нём содержится
6,67%
углерода (по массе). Цементит имеет сложную ромбическую кристаллическую решётку, характеризуется очень высокой твёрдостью (
НВ800
), хрупкостью и крайне низкой пластичностью. Температура плавления зависит от его состава (хром, молибден и др.) и находится в широком диапазоне
1250…1600º С.
Твёрдый раствор углерода в α-железеназывают
ферритом.
Содержание углерода в феррите очень невелико – максимальное – 0,02%
при температуре
727ºС (рис.2.2)
. При комнатной температуре углерода в феррите содержится не более
0,006%
. Благодаря столь малому содержанию углерода свойства феррита совпадает со свойствами железа (низкая твёрдость и высокая пластичность). Твёрдый раствор углерода в δ-железе, существующий при температуре
1392…1539º С
, также называется
ферритом,
или
высокотемпературным ферритом
(
δ-ферритом
). Он характеризуется максимальной растворимостью углерода
0,1%
при температуре
1499ºС.
Твёрдый раствор углерода в γ-железеназывается
аустенитом
. Максимальное содержание углерода в аустените составляет 2,14%
(при температуре
1147ºС
). Аустенит характеризуется высокой пластичностью и низкими прочностью и твёрдостью (
НВ220
).
Механическую смесь феррита с цементитом называют перлитом.
Онсодержит 0,8%
углерода и образуется из аустенита при температуре
727º С
и является
эвтектоидом
.
Эвтектоид
– это механическая смесь двух фаз, образующаяся из твёрдого раствора
.
Перлит имеет пластинчатое строение, т.е. состоит из чередующихся пластинок феррита и цементита. Возможно и зернистое строение перлита, когда он состоит из зёрен цементита, окружённых ферритом. Зернистый перлит значительно пластичнее пластинчатого, имеет меньшую твёрдость.
Эвтектическая смесь аустенита с цементитом представляет собой ледебурит.
Он содержит 4,3%
углерода, образуется из жидкого сплава при температуре
1147º С
. При температуре
727º С
аустенит, входящий в состав ледебурита, превращается в перлит, а ниже этой температуры ледебурит представляет собой механическую смесь перлита с цементитом. Ледебурит обладает высокой твёрдостью
(НВ600…700)
и хрупкостью.
Фаза цементита имеет пять структурных форм: цементит первичный
, образующийся из жидкого сплава; цементит вторичный
, образующийся из аустенита;
цементит третичный
, образующийся из феррита;
цементит ледебурита
;
цементит перлита.Диаграмма железо-цементит
Практическое значение имеют сплавы железа с углеродом, содержащие углерода до 6,67%
(стали и чугуны). Поэтому рассматривают диаграмму состояния сплавов железа с углеродом только до этой концентрации, т.е. фактически рассматривается диаграмма железо-цементит ( Fe–Fe3C
). На
рис.2.2
приведена диаграмма состояния сплавов железа с цементитом. На горизонтальной оси концентраций отложено содержание углерода от до
6,67%.
Левая вертикальная ось соответствует
100%
содержанию железа. На ней отложены температура плавления железа и температура его полиморфных превращений. Правая вертикальная ось (
6,67%
углерода) соответствует
100%
содержанию цементита. Буквенное обозначение точек диаграммы принято согласно международному стандарту и изменению не подлежит.
Свойства доэвтектоидной стали
Данный металл относится к низкоуглеродистым сталям, поэтому особых эксплуатационных качеств от него ждать не стоит. Достаточно сказать, что в характеристиках прочности этот сплав значительно проигрывает эвтектоидам. Обусловлено это как раз различиями в структуре. Дело в том, что доэвтектоидный класс стали с содержанием избыточных ферритов уступает в прочности аналогам, имеющим в структурном наборе цементит. Отчасти по этой причине технологи рекомендуют для строительной сферы использовать сплавы, в производстве которых была максимально реализована операция обжига с вытеснением ферритов.
Если же говорить о положительных исключительных свойствах данного материала, то они заключаются в пластичности, стойкости к естественным биологическим процессам разрушения и т. д. Вместе с этим закалка доэвтектоидных сталей может добавить металлу и целый ряд дополнительных качеств. Например, это может быть и повышенная термическая стойкость, и отсутствие предрасположенности к процессам коррозии, а также целый набор защитных свойств, присущих обычным низкоуглеродистым сплавам.
Узловые критические точки диаграммы состояния системы железо углерод
На диаграмме железо углерод отмечено некоторое количество точек, называемых критичными. Каждая точка несет в себе информацию о температуре, долевом содержании углерода и описанием того, что именно происходит в этом месте.
Всего существует 14 этих критичных точек.
Например, А, говорит о том, что при температуре 1539 °С и при нулевом содержании углерода происходит плавление чистого железа. D говорит о том, что при температуре 1260 возможно плавление Fe3c.
Точки расположены на пересечении линий, размещенных на диаграмме.
Сферы применения
Несмотря на некоторое понижение прочностных свойств, обусловленное принадлежностью металла к классу ферритовых сталей, этот материал распространен в разных областях. Например, в машиностроении применяются детали, выполненные из доэвтектоидных сталей. Другое дело, что используются высокие марки сплавов, в изготовлении которых применялись передовые технологии обжига и нормализации. Также структура доэвтектоидной стали с пониженным содержанием феррита вполне позволяет использовать металл в производстве строительных конструкций. Более того, доступная стоимость некоторых марок стали такого типа позволяет рассчитывать на существенную экономию. Иногда в изготовлении стройматериалов и стальных модулей вовсе не требуется повышенная прочность, но необходима износостойкость и упругость. В таких случаях как раз и оправдано применение доэвтектоидных сплавов.
Аустенит в сталях
Наличие аустенита в стальных сплавах придает им определенные свойства. Детали и узлы, произведенные из подобных сталей, предназначаются для работы в средах, содержащие агрессивные компоненты, например, на предприятиях, перерабатывающих разные кислоты.
Стали этого класса отличаются высоким уровнем легирования, во время кристаллизации формируется гранецентрированная решетка. Такая структура не подвержена изменению даже под воздействием глубокого холода.
Стали этого типа можно разделить на два типа отличающиеся друг от друга составом. В первых, содержатся такие вещества как железо, никель, хром. При этом общее количество добавок не может превышать 55%. Ко второй группе относят никелевые и железоникелевые композиции. В никелевых композициях, его содержание превышает 55%. В железоникелевых составах соотношение никеля и железа составляет 1:5, а количество никеля начинается от 65%.
Такое количество никеля обеспечивает повышенную пластичность, а хром, в свою очередь обеспечивает высокую коррозионную стойкость и жаропрочность. Применение других легирующих материалов позволяет выплавлять сплавы с уникальными эксплуатационными свойствами. Металлурги, составляя рецептуру сплавов, руководствуются будущим назначением сталей.
Для получения легированный сталей применяют ферритизаторы, которые придают постоянство аустенитам, к таким веществам относят ниобий, кремний и некоторые другие. Кроме них применяют углерод, марганец – их называют аустенизаторами.
Производство
Изготовлением, подготовкой и выпуском доэвтектоидного металла в России занимаются многие предприятия. Например, Уральский завод цветных металлов (УЗЦМ) производит сразу несколько марок стали такого типа, предлагая потребителю разные наборы технико-физических свойств. Уральский сталелитейный завод выпускает ферритовые стали, в состав которых входят высококачественные легированные компоненты. Кроме того, в ассортименте доступны особые модификации сплавов, в том числе жаропрочные, высокохромистые и нержавеющие металлы.
Среди крупнейших производителей можно выделить и предприятие «Металлоинвест». На мощностях этой компании выпускаются конструкционные стали с доэвтектоидной структурой, рассчитанные на использование в строительстве. На данный момент сталелитейный завод предприятия работает по новым стандартам, позволяющим улучшать и слабое место ферритовых сплавов – прочностный показатель. В частности, технологи компании работают над повышением коэффициента интенсивности напряжения, над оптимизацией ударной вязкости и показателями сопротивления усталости материала. Это позволяет предлагать сплавы практически универсального назначения.