В основе химических свойств большинства элементов лежит их способность к растворению в водной среде и кислотах. Изучение характеристики меди связано с малоактивным действием в обычных условиях. Особенностью её химических процессов является образование соединений с аммиаком, ртутью, азотной и серной кислотами. Низкая растворимость меди в воде не способна вызвать коррозионные процессы. Ей присущи особые химические свойства, позволяющие использовать соединение в разных отраслях промышленности.
Описание элемента
Медь считается старейшим из металлов, который научились добывать люди ещё до нашей эры. Это вещество получают из природных источников в виде руды. Медью называют элемент химической таблицы с латинским наименованием cuprum, порядковый номер которого равен 29. В периодической системе он расположен в четвёртом периоде и относится к первой группе.
Природное вещество является розово-красным тяжёлым металлом с мягкой и ковкой структурой. Температура его кипения и плавления – более 1000 °С. Считается хорошим проводником.
Химическое строение и свойства
Если изучить электронную формулу медного атома, то можно обнаружить, что у него имеется 4 уровня. На валентной 4s-орбитали находится всего один электрон. Во время химических реакций от атома может отщепляться от 1 до 3 отрицательно заряжённых частиц, тогда получаются соединения меди со степенью окисления +3, +2, +1. Наибольшей устойчивостью обладают её двухвалентные производные.
В химических реакциях она выступает в качестве малоактивного металла. В обычных условиях растворимость меди в воде отсутствует. В сухом воздухе не наблюдается коррозия, зато при нагревании поверхность металла покрывается чёрным налётом из оксида двухвалентного. Химическая устойчивость меди проявляется при действии безводных газов, углерода, ряда органических соединений, фенольных смол и спиртов. Для неё характерны реакции комплексообразования с выделением окрашенных соединений. Медь обладает небольшим сходством с металлами щелочной группы, связанным с формированием производных одновалентного ряда.
Это интересно знать
1. При сравнении свойств меди и щелочных металлов возникает закономерный вопрос: почему при однотипной электронной конфигурации внешнего энергетического уровня (например, 4s1 у атомов К и Cu) свойства меди и щелочных металлов столь различны? Дело в том, что орбитальный радиус атома меди (0,119 нм) значительно меньше, чем калия (0,216 нм), а заряд ядра — больше. Поэтому 4s1-электрон в атоме меди сильнее притягивается к ядру, чем в атоме калия; соответственно первая энергия ионизации атома меди (745,4 кДж/моль) существенно выше, чем атома калия (418,8 кДж/моль). Однако вторая и третья энергии ионизации для меди (1957,9 и 3554 кДж/моль соответственно) значительно меньше таковых для калия (3070,1 и 4,4*103 кДж/моль соответственно), т. е. в атоме меди 4s- и Зd-электроны близки по энергии. Это объясняется тем, что оторвать электрон(ы) от иона с электронной конфигурацией. Зs23p63d10 (Cu+) легче, чем от иона с электронной конфигурацией. Зs23p6 (K+). Поэтому в отличие от щелочных металлов медь в соединениях может проявлять степени окисления +2, +3 и даже + 4.
2. Не менее интересен вопрос о причинах различия в химической активности меди и цинка — металлов, относящихся к одному семейству, соседей по периодической системе. Значения двукратной энергии ионизации атомов цинка (1733,3 кДж/моль) незначительно меньше, чем меди (1957,9 кДж/моль), однако энтальпия атомизации для цинка (130,5 кДж/моль) почти в три раза меньше, чем для простого вещества меди (339,0 кДж/моль). Иными словами, атомы цинка в его кристалле менее прочно связаны между собой, что и обусловливает большую химическую активность простого вещества (не атома!) цинка по сравнению с простым веществом медью.
3. При очистке меди электролитическим способом катодом служит лист чистой меди, анодом — болванка неочищенной (черновой) меди, а электролитом — раствор СuSO4. В процессе электролиза анод растворяется:
Сu0 — 2е ( Cu2+ и медь оседает на катоде:
Сu2+ — 2е ( Cu0.
Таким способом получают медь высокой степени чистоты, содержащую до 99,8% меди по массе.
4. Для меди в степени окисления +3 известны соединения Cu2О3, (оксид кислотного характера), K3[CuF6], КCuО2, К[Cu(ОН)4] и др. Описано соединение, в котором степень окисления меди равна +4: Сs2[CuF6].
5. Поясним причину растворения меди в галогеноводородных кислотах. Дело в том, что электродный потенциал системы Сu+/Cu зависит от концентрации ионов Сu+ следующим образом: чем меньше концентрация ионов Сu+, тем сильнее значение электродного потенциала сдвигается в сторону отрицательных значений. Образование очень устойчивого комплекса Н[CuСl2] настолько понижает концентрацию ионов Сu+, что электродный потенциал системы Сu+/Сu сдвигается в сторону отрицательных значений и становится возможным окисление атомов меди ионами Н+.
6. Высокая склонность меди к образованию комплексных соединений объясняется наличием в ее атоме вакантных и близких по энергии 4р- и 4d-орбиталей. При образовании химической связи медь обычно служит акцептором электронов, а молекулы или ионы с неподеленными парами электронов (Н2O, NH3) — донорами электронов. Однако, известны комплексные соединения, в которых медь за счет неподеленных пар электронов на Зd-орбиталях является донором электронов.
7. Сульфат меди (I) может быть получен при 200°С по реакции:
2Cu + 2Н2SO4 ( Cu2SO4 + SO2( + 2Н2O.
Эта соль устойчива на воздухе, но водой разлагается на Cu2SO4 и Cu (диспропорционирует).
Что такое растворимость?
Это процесс образования однородных систем в виде растворов при взаимодействии одного соединения с другими веществами. Их составляющими являются отдельные молекулы, атомы, ионы и другие частицы. Степень растворимости определяется по концентрации вещества, которое растворили при получении насыщенного раствора.
Единицей измерения чаще всего являются проценты, объёмные или весовые доли. Растворимость меди в воде, как и других соединений твёрдого вида, подчиняется лишь изменениям температурных условий. Эту зависимость выражают с помощью кривых. Если показатель очень маленький, то вещество считается нерастворимым.
Значение меди для человека
Медь – один из важнейших микроэлементов не только для растений. Она содержится в организме человека (100-200 мг) и вырабатывается печенью. Для поддержания баланса человек ежедневно должен потреблять 2 мг меди. Избыток минерала превращается в яд, из-за этого нельзя готовить еду в медной посуде.
Пользу меди нельзя переоценить, если речь идет о заживлении ран и восстановлении организма. Она обладает бактерицидными свойствами, способствует нормализации работы кровеносной системы, регенерации тканей, используется как компонент для некоторых лекарственных препаратов. За 2 часа на медной поверхности гибнут все микробы, поэтому планируется для больниц и других общественных мест изготавливать перила, замки и дверные ручки из этого металла.
Медные браслеты и амулеты носили еще в древности не для украшения, а для поддержания здоровья. С этой же целью с помощью нанотехнологий создано постельное и нательное белье с медными нитями. Оно благотворно влияет на кожу, сосуды, ЦНС, опорно-двигательный аппарат.
Если проанализировать значение меди и повсеместное ее использование, можно сказать, что медный век продолжается.
Растворимость меди в водной среде
Металл проявляет коррозионную стойкость под действием морской воды. Это доказывает его инертность в обычных условиях. Растворимость меди в воде (пресной) практически не наблюдается. Зато во влажной среде и под действием углекислого газа на металлической поверхности происходит образование плёнки зелёного цвета, которая является основным карбонатом:
Cu + Cu + O2 + H2O + CO2 → Cu(OH)2 · CuCO2.
Если рассматривать её одновалентные соединения в виде соли, то наблюдается их незначительное растворение. Такие вещества подвержены быстрому окислению. В результате получаются соединения меди двухвалентные. Эти соли обладают хорошей растворимостью в водной среде. Происходит их полная диссоциация на ионы.
Применение меди и ее соединений
Вследствие высокой тепло- и электрической проводимости медь в больших количествах используется для изготовления электрических проводов, кабелей, котлов, перегонных кубов и т. д.
Самое разнообразное применение находят сплавы меди. Латунь (содержит до 45% цинка) используется для изготовления радиаторов, деталей часовых механизмов, в судостроении. Медно-никелевые сплавы применяют в энергетической промышленности, судостроении, для изготовления термопар, магазинов сопротивлений. Основное назначение бронзы (содержит олово или алюминий) — изготовление колоколов, статуй.
Соединения меди нашли следующее применение:
Cu2O — а качестве выпрямителя переменного тока.
CuО — как окислитель в лабораторной технике, в производстве стекла и эмалей, как зеленый и синий краситель.
СuSO4 — как осушитель; СuSO4 • 5Н2О — медный купорос — для борьбы с вредителями сельского хозяйства, При пропитке древесины для предотвращения гниения.
(CuOH)2CO3 — для изготовления синих и зеленых красок, как поделочный камень (в виде малахита).
Растворимость меди в азотной кислоте
Такая реакция возможна ввиду того, что происходит процесс окисления металла сильным реагентом. Кислота азотная в разбавленном и концентрированном виде проявляет окислительные свойства с растворением меди.
В первом варианте во время реакции получается меди нитрат и азота двухвалентный оксид в соотношении 75 % к 25 %. Процесс с разбавленной кислотой азотной можно описать следующим уравнением:
8HNO3 + 3Cu → 3Cu(NO3)2 + NO + NO + 4H2O.
Во втором случае получается меди нитрат и азота оксиды двухвалентные и четырёхвалентные, соотношение которых 1 к 1. В этом процессе участвует 1 моль металла и 3 моля кислоты азотной концентрированной. При растворении меди происходит сильный разогрев раствора, в результате чего наблюдается термическое разложение окислителя и выделение дополнительного объёма азотных оксидов:
4HNO3 + Cu → Cu(NO3)2 + NO2 + NO2 + 2H2O.
Реакцию используют в малотоннажном производстве, связанном с переработкой лома или удалением покрытия с отходов. Однако такой способ растворения меди имеет ряд недостатков, связанных с выделением большого количества азотных оксидов. Для их улавливания или нейтрализации необходимо специальное оборудование. Процессы эти весьма затратные.
Растворение меди считается завершённым, когда происходит полное прекращение выработки летучих азотистых оксидов. Температура реакции колеблется от 60 до 70 °C. Следующим этапом является спуск раствора из химического реактора. На его дне остаются небольшие куски металла, который не прореагировал. К полученной жидкости добавляют воду и проводят фильтрацию.
Физические свойства меди
Чистая медь – это металл, цвет которого варьируется от розового до красного оттенка. Радиус положительно заряженных ионов меди, может принимать такие значения:
- при координационном показателе равном 6-ти — до 0,091 нм
- при координационном показателе равном 2 — до 0,06 нм.
Радиус атома меди равняется 0,128 нм. Величина сродства к электрону достигает 1,8 эВ. Процесс ионизации данного атома увеличивает сродство к электрону от 7,726 до 82,7 эВ. Медь является переходным металлом. Величина показателя его электроотрицательности достигает 1,9 единиц по шкале Полинга. Стоит отметить, что степень окисления способна принимать разные значения. В условиях температуры в пределах от 20 до 100 градусов, показатель теплопроводности равен 394 Вт/м*К. показатель электропроводности меди, уступает по которому она только серебру, колеблется в пределах 55,5–58 МСм/м.
Поскольку медь в потенциальном ряду расположена справа от водорода, то она не способна вытеснять этот элемент из воды и разного типа кислот. Медь имеет кристаллическую решетку кубического гранецентрированного типа, а ее величина достигает 0,36150 нм. Плавление меди начинается при температуре 1083 градусов, а закипает она при 26570 градусах. Плотность меди определяется ее физическими свойствами и составляет 8,92 г/см3. Кроме вышеперечисленных, стоит выделить еще и такие физические и механические свойства меди:
- показатель термического линейного расширения составляет 0,00000017 единиц
- показатель предела прочности на растяжение достигает 22 кгс/мм2
- уровень твердости меди по шкале Бринелля равен 35 кгс/мм2
- удельная масса составляет 8,94 г/см3
- показатель упругости равен 132000 Мн/м2
- относительное удлинение равняется 60%.
Абсолютно неповторимыми можно назвать магнитные свойства этого металла, который является полностью диамагнитным. Именно благодаря этим показателям, вместе с физическими свойствами, к примеру, удельным весом и удельной проводимостью, можно объяснить такую широкую популярность этого металла в производстве изделий электротехнической отрасли. Несколько похожие свойства имеет алюминий, который тоже активно применяется в изготовлении различной электротехнической продукции, к примеру, проводов, кабелей и прочего. Единственная характеристика меди, которую можно изменить — это предел прочности. Этот показатель может быть улучшен почти в два раза (до 420–450 МН/м2), путем специальной технологической операции, называемой наклеп.
Растворимость в кислоте серной
В обычном состоянии такая реакция не протекает. Фактором, определяющим растворение меди в серной кислоте, является её сильная концентрация. Разбавленная среда не может окислить металл. Растворение меди в серной кислоте концентрированной протекает с выделением сульфата.
Процесс выражается следующим уравнением:
Cu + H2SO4 + H2SO4 → CuSO4 + 2H2O + SO2.
Из чего делают медь
Источниками для получения меди являются руды, минералы и вторичное сырье. Из руды металл получают двумя методами:
- Пирометаллургический (основной). Сырье меди обогащают и подвергают флотации и обжигу. Таким способом из медной руды делают концентраты, содержащие 8-25% Cu. Затем следует окислительный обжиг, плавка, продувка и рафинирование, когда медь очищается от примесей. Попутно извлекаются драгоценные металлы. Метод годится даже для руд, в которых содержание меди не дотягивает до 0,5%.
- Гидрометаллургический. Металл выщелачивается серной кислотой, а затем выделяется из полученного раствора. Применяется для бедных руд, без возможности получения драгметаллов.
Вторичное сырье поддается предварительной обработке, затем переплавке. Из него получается металл с содержанием меди 99%.
Свойства сульфата меди
Соль двухосновную ещё называют сернокислой, обозначают её так: CuSO4. Она представляет собой вещество без характерного запаха, не проявляющее летучесть. В безводной форме соль не имеет цвета, она непрозрачная, обладающая высокой гигроскопичностью. У меди (сульфат) растворимость хорошая. Молекулы воды, присоединяясь к соли, могут образовывать кристаллогидратные соединения. Примером служит купорос медный, который является пентагидратом голубого цвета. Его формула: CuSO4·5H2O.
Кристаллогидратам присуща прозрачная структура синеватого оттенка, они проявляют горьковатый, металлический привкус. Молекулы их способны со временем терять связанную воду. В природе встречаются в виде минералов, к которым относят халькантит и бутит.
Подвержен воздействию меди сульфат. Растворимость является реакцией экзотермической. В процессе гидратации соли выделяется значительное количество тепла.
Медь, свойства, соединения, сплавы, производство, применение
Медь
Медь (лат. Cuprum) — химический элемент I группы периодической системы Менделеева (атомный номер 29, атомная масса 63,546). В соединения медь обычно проявляет степени окисления +1 и +2, известны также немногочисленные соединения трехвалентной меди. Важнейшие соединения меди: оксиды Cu2O, CuO, Cu2O3; гидроксид Cu(OH)2, нитрат Cu(NO3)2.3H2O, сульфид CuS, сульфат(медный купорос) CuSO4.5H2O, карбонат CuCO3Cu(OH)2, хлорид CuCl2.2H2O.
Медь — один из семи металлов, известных с глубокой древности. Переходный период от каменного к бронзовому веку (4 — 3-е тысячелетие до н.э.) назывался медным веком или халколитом (от греческого chalkos — медь и lithos — камень) или энеолитом (от латинского aeneus — медный и греческого lithos — камень). В этот период появляются медные орудия. Известно, что при возведении пирамиды Хеопса использовались медные инструменты.
Чистая медь — ковкий и мягкий металл красноватого, в изломе розового цвета, местами с бурой и пестрой побежалостью, тяжелый (плотность 8,93 г/см3), отличный проводник тепла и электричества, уступая в этом отношении только серебру (температура плавления 1083 °C). Медь легко вытягивается в проволоку и прокатывается в тонкие листы, но сравнительно мало активна. В сухом вохдухе и кислороде при нормальных условиях медь не окисляется. Но она достаточно легко вступает в реакции: уже при комнатной температуре с галогенами, например с влажным хлором образует хлорид CuCl2, при нагревании с серой образует сульфид Cu2S, с селеном. Но с водородом, углеродом и азотом медь не взаимодействует даже при высоких температурах. Кислоты, не обладающие окислительными свойствами, на медь не действуют, например, соляная и разбавленная серная кислоты. Но в присутствии кислорода воздуха медь растворяется в этих кислотах с образованием соотвествующих солей: 2Cu + 4HCl + O2 = 2CuCl2 + 2H2O.
В атмосфере, содержащей CO2, пары H2O и др., покрывается патиной — зеленоватой пленкой основного карбоната (Cu2(OH)2CO3)), ядовитого вещества.
Медь входит более чем в 170 минералов, из которых для промышленности важны лишь 17, в том числе: борнит (пестрая медная руда — Cu5FeS4), халькопирит (медный колчедан — CuFeS2), халькозин (медный блеск — Cu2S), ковеллин (CuS), малахит (Cu2(OH)2CO3). Встречается также самородная медь.
Плотность меди, удельный вес меди и другие характеристики меди
Плотность — 8,93*103кг/м3; Удельный вес — 8,93 г/cм3; Удельная теплоемкость при 20 °C — 0,094 кал/град; Температура плавления — 1083 °C ; Удельная теплота плавления — 42 кал/г; Температура кипения — 2600 °C ; Коэффициент линейного расширения (при температуре около 20 °C) — 16,7 *106(1/град); Коэффициент теплопроводности — 335ккал/м*час*град; Удельное сопротивление при 20 °C — 0,0167 Ом*мм2/м;
Модули упругости меди и коэффициент Пуассона
Наименование материала | Модуль Юнга, кГ/мм2 | Модуль сдвига, кГ/мм2 | Коэффициент Пуассона |
Медь, литье | 8400 | — | — |
Медь прокатанная | 11000 | 4000 | 0,31-0,34 |
Медь холоднотянутая | 13000 | 4900 | — |
СОЕДИНЕНИЯ МЕДИ
Оксид меди (I) Cu2O3 и закись меди (I) Cu2O, как и другие соединения меди (I) менее устойчивы, чем соединения меди (II). Оксид меди (I), или закись меди Cu2O в природе встречается в виде минерала куприта. Кроме того, она может быть получена в виде осадка красного оксида меди (I) в результате нагревания раствора соли меди (II) и щелочи в присутствии сильного восстановителя.
Оксид меди (II), или окись меди, CuO — черное вещество, встречающееся в природе (например в виде минерала тенерита). Его получают прокаливанием гидроксокарбоната меди (II) (CuOH)2CO3 или нитрата меди (II) Cu(NO2)2. Оксид меди (II) хороший окислитель. Гидроксид меди (II) Cu(OH)2 осаждается из растворов солей меди (II) при действии щелочей в виде голубой студенистой массы. Уже при слабом нагревании даже под водой он разлагается, превращаясь в черный оксид меди (II). Гидроксид меди (II) — очень слабое основание. Поэтому растворы солей меди (II) в большинстве случаев имеют кислую реакцию, а со слабыми кислотами медь образует основные соли.
Сульфат меди (II) CuSO4 в безводном состоянии представляет собой белый порошок, который при поглощении воды синеет. Поэтому он применяется для обнаружения следов влаги в органических жидкостях. Водный раствор сульфата меди имеет характерный сине-голубой цвет. Эта окраска свойственна гидратированным ионам [Cu(H2O)4]2+, поэтому такую же окраску имеют все разбавленные растворы солей меди (II), если только они не содердат каких-либо окрашенных анионов. Из водных растворов сульфат меди кристаллизуется с пятью молекулами воды, образуя прозрачные синие кристаллы медного купороса. Медный купорос применяется для электролитического покрытия металлов медью, для приготовления минеральных красок, а также в качестве исходного вещества при получении других соединений меди. В сельском хозяйстве разбавленный раствор медного купороса применяется для опрыскивания растений и протравливания зерна перед посевом, чтобы уничтожить споры вредных грибков.
Хлорид меди (II) CuCl2. 2H2O. Образует темно-зеленые кристаллы, легко растворимые в воде. Очень концентрированные растворы хлорида меди (II) имеют зеленый цвет, разбавленные — сине-голубой.
Нитрат меди (II) Cu(NO3)2.3H2O. Получается при растворении меди в азотной кислоте. При нагревании синие кристаллы нитрата меди сначала теряют воду, а затем легко разлагаются с выделением кислорода и бурого диоксида азота, переходя в оксид меди (II).
Гидроксокарбонат меди (II) (CuOH)2CO3. Встречается в природе в виде минерала малахита, имеющего красивый изумрудно-зеленый цвет. Искусственно приготовляется действием Na2CO3 на растворы солей меди (II). 2CuSO4 + 2Na2CO3 + H2O = (CuOH)2CO3↓ + 2Na2SO4 + CO2↑ Применяется для получения хлорида меди (II), для приготовления синих и зеленых минеральных красок, а также в пиротехнике.
Ацетат меди (II) Cu (CH3COO)2.H2O. Получается обработкой металлической меди или оксида меди (II) уксусной кислотой. Обычно представляет собой смесь основных солей различного состава и цвета (зеленого и сине-зеленого). Под названием ярь-медянка применяется для приготовления масляной краски.
Комплексные соединения меди образуются в результате соединения двухзарядных ионов меди с молекулами аммиака. Из солей меди получают разноообразные минеральные краски. Все соли меди ядовиты. Поэтому, чтобы избежать образования медных солей, медную посуду покрывают изнутри слоем олова (лудят).
ПРОИЗВОДСТВО МЕДИ
Медь добывают из оксидных и сульфидных руд. Из сульфидных руд выплавляют 80% всей добываемой меди. Как правило, медные руды содержат много пустой породы. Поэтому для получения меди используется процесс обогащения. Медь получают методом ее выплавки из сульфидных руд. Процесс состоит из ряда операций: обжига, плавки, конвертирования, огневого и электролитического рафинирования. В процессе обжига большая часть примесных сульфидов превращается в оксиды. Так, главная примесь большинства медных руд пирит FeS2 превращается в Fe2O3. Газы, образующиеся при обжиге, содержат CO2, который используется для получения серной кислоты. Получающиеся в процессе обжига оксиды железа, цинка и других примесей отделяются в виде шлака при плавке. Жидкий медный штейн (Cu2S с примесью FeS) поступает в конвертор, где через него продувают воздух. В ходе конвертирования выделяется диоксид серы и получается черновая или сырая медь. Для извлечения ценных (Au, Ag, Te и т.д.) и для удаления вредных примесей черновая медь подвергается сначала огневому, а затем электролитическому рафинированию. В ходе огневого рафинирования жидкая медь насыщается кислородом. При этом примеси железа, цинка и кобальта окисляются, переходят в шлак и удаляются. А медь разливают в формы. Получающиеся отливки служат анодами при электролитическом рафинировании. Основным компонентом раствора при электролитическом рафинировании служит сульфат меди — наиболее распространенная и дешевая соль меди. Для увеличения низкой электропроводности сульфата меди в электролит добавляют серную кислоту. А для получения компактного осадка меди в раствор вводят небольшое количество добавок. Металлические примеси, содержащиеся в неочищенной («черновой») меди, можно разделить на две группы.
1)Fe, Zn, Ni, Co. Эти металлы имеют значительно более отрицательные электродные потенциалы, чем медь. Поэтому они анодно растворяются вместе с медью, но не осаждаются на катоде, а накапливаются в электролите в виде сульфатов. Поэтому электролит необходимо периодически заменять.
2)Au, Ag, Pb, Sn. Благородные металлы (Au, Ag) не претерпевают анодного растворения, а в ходе процесса оседают у анода, образуя вместе с другими примесями анодный шлам, который периодически извлекается. Олово же и свинец растворяются вместе с медью, но в электролите образуют малорастворимые соединения, выпадающие в осадок и также удаляемые.
СПЛАВЫ МЕДИ
Сплавы, повышающие прочность и другие свойства меди, получают введением в нее добавок, таких, как цинк, олово, кремний, свинец, алюминий, марганец, никель. На сплавы идет более 30% меди.
Латуни — сплавы меди с цинком ( меди от 60 до 90% и цинка от 40 до 10%) — прочнее меди и менее подвержены окислению. При присадке к латуни кремния и свинца повышаются ее антифрикционные качества, при присадке олова, алюминия, марганца и никеля возрастает антикоррозийная стойкость. Листы, литые изделия используются в машиностроении, особенно в химическом, в оптике и приборостроении, в производстве сеток для целлюлознобумажной промышленности.
Бронзы. Раньше бронзами называли сплавы меди (80-94%) и олова (20-6%). В настоящее время производят безоловянные бронзы, именуемые по главному вслед за медью компоненту.
Алюминиевые бронзы содержат 5-11% алюминия, обладают высокими механическими свойствами в сочетании с антикоррозийной стойкостью.
Свинцовые бронзы, содержащие 25-33% свинца, используют главным образом для изготовления подшипников, работающих при высоких давлениях и больших скоростях скольжения.
Кремниевые бронзы, содержащие 4-5% кремния, применяют как дешевые заменители оловянных бронз.
Бериллиевые бронзы, содержащие 1,8-2,3% бериллия, отличаются твердостью после закалки и высокой упругостью. Их применяют для изготовления пружин и пружинящих изделий.
Кадмиевые бронзы — сплавы меди с небольшим количества кадмия (до1%) — используют для изготовления арматуры водопроводных и газовых линий и в машиностроении.
Припои — сплавы цветных металлов, применяемые при пайке для получения монолитного паяного шва. Среди твердых припоев известен медносеребряный сплав (44,5-45,5% Ag; 29-31%Cu; остальное — цинк).
ПРИМЕНЕНИЕ МЕДИ
Медь, ее соединения и сплавы находят широкое применение в различных отраслях промышленности.
В электротехнике медь используется в чистом виде: в производстве кабельных изделий, шин голого и контактного проводов, электрогенераторов, телефонного и телеграфного оборудования и радиоаппаратуры. Из меди изготавливают теплообменники, вакуум-аппараты, трубопроводы. Более 30% меди идет на сплавы.
Сплавы меди с другими металлами используют в машиностроении, в автомобильной и тракторной промышленности (радиаторы, подшипники), для изготовления химической аппаратуры.
Высокая вязкость и пластичность металла позволяют применять медь для изготовления разнообразных изделий с очень сложным узором. Проволока из красной меди в отожженном состоянии становится настолько мягкой и пластичной, что из нее без труда можно вить всевозможные шнуры и выгибать самые сложные элементы орнамента. Кроме того, проволока из меди легко спаивается сканым серебряным припоем, хорошо серебрится и золотится. Эти свойства меди делают ее незаменимым материалом при производстве филигранных изделий.
Коэффициент линейного и объемного расширения меди при нагревании приблизительно такой же , как у горячих эмалей, в связи с чем при остывании эмаль хорошо держится на медном изделии, не трескается , не отскакивает. Благодаря этому мастера для производства эмалевых изделий предпочитают медь всем другим металлам.
Как и некоторые другие металлы, медь входит в число жизненно важных микроэлементов. Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата — медного купороса CuSO4.5H2O. В большом количестве он ядовит, как и многие другие соединения меди, особенно для низших организмов. В малых же дозах медь необходима всему живому.
Растворимость меди в железе
В результате этого процесса образуются псевдосплавы из Fe и Cu. Для металлического железа и меди возможна ограниченная взаимная растворимость. Максимальные её значения наблюдаются при температурном показателе 1099,85 °C. Степень растворимости меди в твёрдой форме железа равняется 8,5 %. Это небольшие показатели. Растворение металлического железа в твёрдой форме меди составляет около 4,2 %.
Снижение температуры до комнатных значений делает взаимные процессы незначительными. При расплавлении металлической меди, она способна хорошо смачивать железо в твёрдой форме. При получении псевдосплавов Fe и Cu используют особые заготовки. Их создают путём прессования или печения железного порошка, находящегося в чистой или легированной форме. Такие заготовки пропитывают жидкой медью, образуя псевдосплавы.
Популярные темы сообщений
- Чувства человека
Чувства формируются в процессе развития человека. Они формируют эмоциональную устойчивость, умение испытывать какое-то определённое чувство, или эмоцию. Человек чувствителен, и это определяется в физических и эмоциональных ощущений. - Цветы Георгины
Еще во втором столетии прошлого века георгины стали популярными. Он растет на садовых и приусадебных участках. Все меняется и постепенно мода на цветы также изменилась. - Микроскоп
Наш мир очень богат, но зачастую всё богатство хранится в мелочах. Они настолько маленькие, что глазами их рассмотреть невозможно. Но ведь так хочется увидеть всю красоту, всё изящество. Именно поэтому изобрели микроскоп.
Растворение в аммиаке
Процесс часто протекает при пропускании NH3 в газообразной форме над раскалённым металлом. Результатом является растворение меди в аммиаке, выделение Cu3N. Это соединение называют нитридом одновалентным.
Соли её подвергаются воздействию раствора аммиачного. Прибавление такого реактива к медному хлориду приводит к выпадению осадка в виде гидроксида:
CuCl2 + NH3 + NH3 + 2H2O → 2NH4Cl + Cu(OH)2↓.
Аммиачный избыток способствует формированию соединения комплексного типа, имеющего окраску тёмно-синюю:
Cu(OH)2↓+ 4NH3 → [Cu(NH3)4] (OH)2.
Этот процесс используют для определения ионов двухвалентной меди.
Растворимость в чугуне
В структуре ковкого перлитного чугуна помимо основных компонентов присутствует дополнительный элемент в виде обычной меди. Именно она повышает графитизацию углеродных атомов, способствует увеличению жидкотекучести, прочности и твёрдости сплавов. Металл положительно влияет на уровень перлита в конечном продукте. Растворимость меди в чугуне используют для проведения легирования исходного состава. Основной целью такого процесса является получение ковкого сплава. У него будут повышенные механические и коррозионные свойства, но уменьшено охрупчивание.
Если содержание меди в чугуне составляет около 1 %, то показатель прочности при проведении растяжения приравнивается к 40 %, а текучести увеличивается до 50 %. Это существенно изменяет характеристики сплава. Повышение количества металла, легирующего до 2 %, приводит к изменению прочности до значения 65 %, а показатель текучести становится равен 70 %. При большем содержании меди в составе чугуна труднее образуется шаровидный графит. Введение в структуру легирующего элемента не изменяет технологию формирования вязкого и мягкого сплава. Время, которое отводится для отжига, совпадает с продолжительностью такой реакции при производстве чугуна без примеси меди. Оно составляет около 10 часов.
Использование меди для изготовления чугуна с высокой концентрацией кремния не способно полностью устранить так называемое ожелезнение смеси во время отжига. В результате получают продукт с низкой упругостью.
Марки меди
Маркировка меди начинается с буквы «М». Следующая за ней цифра показывает чистоту металла:
- МОО: 99,99% Cu;
- МО: 99,97%;
- М1: 99, 9%;
- М2: 99,7%;
- М3: 99,5%;
- М4: 99%.
Кислород значительно снижает прочность меди, поэтому его содержание подразумевается в маркировке. Марки с цифрами 1, 2, 3 содержат 0,5-0,8% кислорода, МО – 0,02%, МОб – 0%. Присутствие фосфора обозначается буквами «р» (при небольшом процентном содержании) и «ф» (более 0,4%). Литера «к» относится к катодной меди. В некоторых странах принята своя маркировка, не соответствующая российской.
Различают 2 вида меди – чистую и техническую. Последняя используется для производства полуфабрикатов и выплавки сплавов. Примеси других химических элементов в той или иной мере влияют на свойства Cu. Например:
- Никель понижает теплопроводность, а олово её усиливает.
- Висмут ухудшает технические характеристики, а мышьяк нейтрализует действие первого, оставаясь нейтральным по отношению к меди.
- Сурьма и кремний снижают способность проводить тепло и электричество.
- Сера и селен в определенных количествах ухудшают пластичность.
- Свинец и висмут затрудняют обработку давлением.
- Фосфор удаляет кислород, из-за которого физические свойства ухудшаются.
- Такие примеси, как цинк, марганец, мышьяк, никель, серебро практически не изменяют физические характеристики меди.
Растворимость в ртути
При смешивании ртути с металлами других элементов получаются амальгамы. Этот процесс может проходить при комнатной температуре, ведь в таких условиях Pb представляет собой жидкость. Растворимость меди в ртути проходит только во время нагревания. Металл необходимо предварительно измельчить. При смачивании жидкой ртутью твёрдой меди происходит взаимное проникновение одного вещества в другое или процесс диффундирования. Значение растворимости выражается в процентах и составляет 7,4*10-3. В процессе реакции получается твёрдая простая амальгама, похожая на цемент. Если её немного нагреть, то она размягчается. В результате такую смесь используют для починки изделий из фарфора. Существуют ещё и сложные амальгамы с оптимальным содержанием в ней металлов. Например, в стоматологическом сплаве присутствуют элементы серебра, олова, меди и цинка. Их количество в процентах относится как 65: 27: 6:2. Амальгам с таким составом называется серебряным. Каждый компонент сплава выполняет определённую функцию, которая позволяет получить пломбу высокого качества.
Другим примером служит сплав амальгамный, в котором наблюдается высокое содержание меди. Его ещё называют медным сплавом. В составе амальгама присутствует от 10 до 30 % Cu. Высокое содержание меди препятствует взаимодействию олова со ртутью, что не позволяет образовываться очень слабой и коррозирующей фазе сплава. Кроме того, уменьшение количества в пломбе серебра приводит к удешевлению. Для приготовления амальгамы желательно использовать инертную атмосферу или защитную жидкость, которая образует плёнку. Металлы, входящие в состав сплава способны быстро окисляться воздухом. Процесс нагревания амальгамы купрума в присутствие водорода приводит к отгонке ртути, что позволяет отделить элементарную медь. Как видите, эта тема несложна для изучения. Теперь вы знаете, как медь взаимодействует не только с водой, но и с кислотами и другими элементами.
Распространенность меди
Распространенность такого химического элемента как медь довольно широка. По распространенности в земной коре медь занимает 23 позицию. Ее содержание в земной коре оценивается в 0,006%. Этот химический элемент является одним из немногих, который встречается в природе в самородном виде. Сегодня известно более 3000 мест по всему миру, где ведется добыча меди. Самыми плодородными месторождениями обладают такие страны как Чили, Россия и США. На сегодняшний день, медными рудниками обладают более 50 стран по всему миру.
Так же стоит отметить, что медь по большей своей части добывается в составе минералов, так как в природном виде она встречается довольно редко. На сегодняшний день известно свыше 600 итнералов в составе которых присутствует медь. Самыми ценными из них являются халькопирит, халькозин, борнит, атакамит и малахит. В составе этих минералов процентное содержание меди превышает 60%.
Что же касается распространенности во вселенной, то тут не все так однозначно. Определить его распространенность не представляется возможным из-за малого количества информации. Известно только его присутствие на луне и на марсе по взятым образцам с этих космических тел. Предположительная оценка концентрации не считается маленькой.
Читайте: Железо как химический элемент таблицы Менделеева