Сопротивление срезу стали aisi 304. Марки нержавеющей стали и их характеристики. Типичные Свойства в Отожженном Состоянии


Характеристики марки стали AISI 304 / SS 304

Стандарт ASTM A182 — Стандартные спецификации на кованые или катаные фланцы для труб, кованые фитинги, клапаны и детали из легированной и нержавеющей стали, предназначенные для эксплуатации при высоких температурах

ASTM A213 — Стандартные спецификации для бесшовных труб для котлов, пароперегревателей и труб теплообменников из ферритных и аустенитных сталей

ASTM A240 — Стандартные спецификации на хром- и никель-хромовые, хром- и марганец-никелевые нержавеющие стали для пластин, листов, полос, служащих для изготовления сосудов, работающих под давлением, а также для общего применения

ASTM A312 — Стандартные спецификации на бесшовные, сварные и прошедшие интенсивную холодную обработку трубы из аустенитной нержавеющей стали

КлассификацияНержавеющая сталь
ПрименениеЛистовой прокат, трубы, профили
Другие наименованияUNSS30400
США (ASTM A167)Листовой прокатA167 304
США (ASTM A182)Кованые и катанные фланцыA182 F304
США (ASTM A213)Бесшовные трубыA213 TP304
США (ASTM A240)Плоский прокатA240 Type 304
США (ASTM A271)Бесшовные трубы перегонныеA271 304
США (ASTM A312)Бесшовные трубыA312 TP304
США (ASTM A851)Сварные конденсаторные трубыA851 TP304

Сталь AISI 304 – самая востребованная марка стали из класса нержавеющих. Повышенный спрос и повсеместное применение обусловлено ее универсальностью. Сталь аиси 304 имеет высокие показатели устойчивости коррозии в агрессивных средах, высокое сопротивление окислению и отличные низкотемпературные свойства.

Стоит отметить, что нержавейка AISI 304 устойчива к негативному воздействию воды (соленая, пресная, водопроводная) и растворов кислот в высоких концентрациях (уксусная, муравьиная, азотная).

Цена aisi 304 вполне доступна, что является еще одним из ее преимуществ.

Удельное сопротивление нержавеющей стали

  • Свойства
  • Таблица технических характеристик
  • Преимущества
  • Виды
  • В современном мире нержавейка является незаменимым материалом при производстве разных разновидностей изделий. Она применяется в пищевой, медицинской, металлургической и военной промышленности.

    Свойства нержавейки

    Сегодня такой материала, как нержавейка является достаточно популярным при производстве многих изделий промышленного и бытового назначения. Нержавеющая сталь представляет собой материал, который производится из стали с добавлением отдельных примесей, которые замедляют или делают процесс образования коррозии на металле невозможным.

    Основным достоинством нержавеющей стали является то, что она обладает высоким уровнем устойчивости к появлению ржавчины.

    В зависимости от добавленных к стали элементов нержавейка может обладать разными внешними качествами и свойствами. Если каких-либо примесей будет больше или меньше, то процесс коррозии либо будет вообще невозможен, либо он появится спустя длительное время использования предметов, созданных из данного материала.

    Нержавеющая сталь применяется для производства промышленного и бытового оборудования, посуды и многих других вещей, которые сталкиваются с влиянием агрессивной среды.

    На промышленных предприятиях нержавейку получают путем добавления к стали таких элементов, как:

    • медь,
    • никель,
    • хром,
    • марганец.

    В зависимости от того, какие виды стали производятся, определяется количество тех или иных элементов в нержавейке. Благодаря данным веществам сталь меняет свои физические и химические свойства, что позволяет использовать этот, материал для изготовления разного рода продукции.

    Все добавляемые к стали элементы влияют на ее качества. Для того чтобы получить материал, устойчивый к появлению коррозии и обладающий высоким уровнем прочности, добавляется:

    • молибден,
    • марганец,
    • титан,
    • никель.

    В стали также не обойтись и без таких элементов, как

    • марганец,
    • фосфор,
    • сера,
    • кремний,

    которые являются частью железной руды. Они являются верными спутниками этого материала для производства нержавейки. На ее качества они практически не влияют.

    Нержавейка сама по себе является уникальным материалом. Она не только обладает рядом преимуществ, но и отличными внешними качествами. Ее сияющая поверхность позволяет использовать этот материал в качестве декоративной отделки зданий и ограждений. Нержавеющая сталь чаще всего становится основной для создания перил для лестниц.

    Таблица. Технические характеристики нержавейки

    Сталь хромоникелеваяХромистая никелевая молибденоваяЖароупорнаяХромистаяМеханические свойства при 20 градусовМеханические свойства при нагреванииТермическая обработкаДругие свойства

    Тип ASTM (AISI)304304L321316316L316 Ti310S430
    Удельный вес (гр/см)7,957,957,957,957,957,957,957,7
    СтруктураАустенитнаяФерритная
    Способность электрического сопротивления при 200,720,720,720,740,740,750,790,60
    Твердость по Бринеллю — НВотжиг НВ130-150125-145130-185130-185120-170130-190145-210135-180
    с деформацией в холодном состоянии НВ180-330180-230
    Твердость По Роквеллу — HRB / HRCОтжиг НRВ70-8870-8570-8870-8570-8570-8570-8575-88
    с деформацией в холодном состоянии HRC10-35
    Rm(N/mm2) — Сопротивление рястяжению c деформацией (Предел прочности)Отжиг500-700500-680520-700540-690520-670540-690520-670440-590
    в холодном состоянии700-1180610-900
    Rp(0,2) (N/mm2) — Предел упругостиОтжиг195-340175-300205-340205-410195-370215-380205-370250-400
    с деформацией в холодном состоянии340-900400-860
    Отжиг Rp(1) (N/mm2) минимальный235215245245235255255275
    Удлинение 50мм А(%)65-50 50-1065-5060-4060-4060-4060-4060-4030-22 20-2
    Сжатие отжиг Z(%)75-6075-6065-5075-6075-6575-6070-5570-60
    Ударная ВязкостьKCUL (Дж/см2)16016012016016012016050
    KVL (Дж/см2)18018013018018013018065
    Упругость при различных температурахRp(0,2) (N/mm2)при 300 С125115150140138145165245
    при 400 С9798135125115135156215
    при 500 С938812010595125147155
    Rp(1) (N/mm2)при 300 С147137186166161176181
    при 400 С127117161147137166171
    при 500 С107108152127117156137
    температура образование окалинынепрерывное обслуживание9259259009259259251120840
    прерывистое обслуживание8408408108408408401030890
    Свариваемостьочень хорошаяочень хорошаяхорошаяочень хорошаяочень хорошаяхорошаяхорошаядостат. хорошее хрупкое соед.
    Вытяжкаочень хорошаяочень хорошаяхорошаяхорошаяхорошаяхорошаяхорошаядостаточно хорошая

    Углеродистые стали

    Углеродистые стали при комнатной температуре, как уже было сказано, имеют низкое удельное электросопротивление за счет высокого содержания железа. При 20°С значение их удельного сопротивления находится в диапазоне от 13·10-8 (для стали 08КП) до 20·10-8 Ом·м (для У12).

    При нагревании до температур более 1000°С способность углеродистых сталей проводить электрический ток сильно снижается. Величина сопротивления возрастает на порядок и может достигать значения 130·10-8 Ом·м.

    Удельное электрическое сопротивление углеродистых сталей ρэ·108, Ом·мТемпература, °ССталь 08КПСталь 08Сталь 20Сталь 40Сталь У8Сталь У12

    1213,215,9161718,4
    201314,216,917,11819,6
    5014,715,918,718,919,821,6
    10017,81921,922,123,225,2
    15021,322,425,425,726,829
    20025,226,329,229,630,833,3
    25029,530,533,433,935,137,9
    30034,135,238,138,739,843
    35039,340,243,243,84548,3
    40044,845,848,749,350,554
    45050,951,854,655,356,560
    50057,558,460,161,962,866,5
    55064,865,768,268,969,973,4
    60072,573,475,876,677,280,2
    65080,781,683,784,485,287,8
    70089,890,592,593,293,596,4
    750100,3101,1105107,9110,5113
    800107,3108,1109,4111,1112,9115
    850110,4111,1111,8113,1114,8117,6
    900112,4113113,6114,9116,4119,6
    950114,2114,8115,2116,6117,8121,2
    1000116116,5116,7117,9119,1122,6
    1050117,5117,9118,1119,3120,4123,8
    1100118,9119,3119,4120,7121,4124,9
    1150120,3120,7120,7122122,3126
    1200121,7122121,9123123,1127,1
    1250123123,3122,9124123,8128,2
    1300124,1124,4123,9124,6128,7
    1350125,2125,3125,1125129,5

    Низколегированные стали

    Низколегированные стали способны чуть более сильно сопротивляться прохождению электричества, чем углеродистые. Их удельное электросопротивление составляет (20…43)·10-8 Ом·м при комнатной температуре.

    Следует отметить марки стали этого типа, которые наиболее плохо проводят электрический ток — это 18Х2Н4ВА и 50С2Г. Однако при высоких температурах, способность проводить электрический ток у сталей, приведенных в таблице, практически не различается.

    Удельное электрическое сопротивление низколегированных сталей ρэ·108, Ом·мМарка стали2010030050070090011001300

    15ХФ28,142,160,683,3
    30Х2125,941,763,693,4114,5120,5125,1
    12ХН233365267112
    12ХН329,667116
    20ХН324294666123
    30ХН326,831,746,968,198,1114,8120,1124,6
    20ХН4Ф36415672102118
    18Х2Н4ВА4144587397115
    30Г220,825,942,164,594,6114,3120,2125
    12МХ24,627,440,659,8
    40Х3М33,148,269,596,2
    20Х3ФВМ39,854,474,398,2
    50С2Г42,94760,178,8105,7119,7124,9128,9
    30Н327,1324767,999,2114,9120,4124,8

    Высоколегированные стали

    Высоколегированные стали имеют удельное электрическое сопротивление в несколько раз выше чем углеродистые и низколегированные. По данным таблицы видно, что при температуре 20°С его величина составляет (30…86)·10-8 Ом·м.

    При температуре 1300°С сопротивление высоко- и низко- легированных сталей становится почти одинаковым и не превышает 131·10-8 Ом·м.

    Удельное электрическое сопротивление высоколегированных сталей ρэ·108, Ом·мМарка стали2010030050070090011001300

    Г1368,375,693,195,2114,7123,8127130,8
    Г20Х12Ф72,379,291,2101,5109,2
    Г21Х15Т82,495,6104,5112119,2
    Х13Н13К1090100,8109,6115,4119,6
    Х19Н10К4790,598,6105,2110,8
    Р1841,947,262,781,5103,7117,3123,6128,1
    ЭХ123136537597119
    40Х10С2М (ЭИ107)8691101112122

    Хромистые нержавеющие стали

    Хромистые нержавеющие стали имеют высокую концентрацию атомов хрома, что увеличивает их удельное сопротивление — электропроводность такой нержавеющей стали не высока. При обычных температурах ее сопротивление составляет (50…60)·10-8 Ом·м.

    Удельное электрическое сопротивление хромистых нержавеющих сталей ρэ·108, Ом·мМарка стали2010030050070090011001300

    Х1350,658,476,993,8110,3115119125,3
    2Х1358,865,38095,2110,2
    3Х1352,259,576,993,5109,9114,6120,9125
    4Х1359,164,678,894108

    Хромоникелевые аустенитные стали

    Хромоникелевые аустенитные стали также являются нержавеющими, но за счет добавки никеля имеют удельное сопротивление почти в полтора раза выше, чем у хромистых — оно достигает величины (70…90)·10-8 Ом·м.

    Удельное электрическое сопротивление хромоникелевых нержавеющих сталей ρэ·108, Ом·мМарка стали201003005007009001100

    12Х18Н974,389,1100,1109,4114
    12Х18Н9Т72,379,291,2101,5109,2
    17Х18Н97273,592,5103111,5118,5
    Х18Н11Б84,697,6107,8115
    Х18Н9В7177,691,6102,6111,1117,1122
    4Х14НВ2М (ЭИ69)81,587,5100110117,5
    1Х14Н14В2М (ЭИ257)82,495,6104,5112119,2
    1х14Н18М3Т89100107,5115
    36Х18Н25С2 (ЭЯ3С)98,5105,5110117,5
    Х13Н25М2В2103112,1118,1121
    Х7Н25 (ЭИ25)109115121127
    Х2Н35 (ЭИ36)87,592,5103110116120,5
    Н2884,289,199,6107,7114,2118,4122,5

    Жаропрочные и жаростойкие стали

    По своим электропроводящим свойствам жаропрочные и жаростойкие стали близки к хромоникелевым. Высокое содержание в этих сплавах хрома и никеля не позволяет им проводить электрический ток, подобно обычным углеродистым с высокой концентрацией железа.

    Значительное удельное электросопротивление и высокая рабочая температура таких сталей делают возможным их применение в качестве рабочих элементов электрических нагревателей. В частности, сталь 20Х23Н18 по своему сопротивлению и жаростойкости в некоторых случаях способна заменить такой популярный сплав для нагревателей, как нихром Х20Н80.

    Удельное электрическое сопротивление жаропрочных и жаростойких сталей ρэ·108, Ом·мТемпература, °С15Х25Т (ЭИ439)15Х28 (ЭИ349)40Х9С2 (ЭСХ8)Х25С3Н (ЭИ261)20Х23Н18 (ЭИ 417)Х20Н35

    106
    207580
    10097
    20098113
    400102105120
    600113115124
    800122121128
    900123
    1000127132

    Химический состав в % стали AISI 304

    CMnPSSiCrNiFe
    <0,08<2,0<0,045<0,03<1,018,0-20,08,0-10,5Остальное

    Нержавеющая сталь ss304 легирована никелем, марганцем, медью и хромом, что обеспечивает ей аустенитную структуру, повышенную прочность и устойчивость в коррозионных средах. Краткое обозначение AISI 304 – 18 Cr-8 Ni

    .

    Удельное сопротивление меди

    > Теория > Удельное сопротивление меди

    Одним из самых распространённых металлов для изготовления проводов является медь. Её электросопротивление минимальное из доступных по цене металлов. Оно меньше только у драгоценных металлов (серебра и золота) и зависит от разных факторов.

    Формула вычисления сопротивления проводника

    Что такое электрический ток

    На разных полюсах аккумулятора или другого источника тока есть разноимённые носители электрического заряда. Если их соединить с проводником, носители заряда начинают движение от одного полюса источника напряжения к другому. Этими носителями в жидкости являются ионы, а в металлах – свободные электроны.

    Определение. Электрический ток – это направленное движение заряженных частиц.

    Удельное сопротивление

    Удельное электрическое сопротивление – это величина, определяющая электросопротивление эталонного образца материала. Для обозначения этой величины используется греческая буква “р”. Формула для расчета:

    p=(R*S)/l.

    Эта величина измеряется в Ом*м. Найти её можно в справочниках, в таблицах удельного сопротивления или в сети интернет.

    Свободные электроны по металлу двигаются внутри кристаллической решётки. На сопротивление этому движению и удельное сопротивление проводника влияют три фактора:

    • Материал. У разных металлов различная плотность атомов и количество свободных электронов;
    • Примеси. В чистых металлах кристаллическая решётка более упорядоченная, поэтому сопротивление ниже, чем в сплавах;
    • Температура. Атомы не находятся на своих местах неподвижно, а колеблются. Чем выше температура, тем больше амплитуда колебаний, создающая помехи движению электронов, и выше сопротивление.

    На следующем рисунке можно увидеть таблицу удельного сопротивления металлов.

    Удельное сопротивление металлов

    Интересно. Есть сплавы, электросопротивление которых падает при нагреве или не меняется.

    Проводимость и электросопротивление

    Так как размеры кабелей измеряются в метрах (длина) и мм² (сечение), то удельное электрическое сопротивление имеет размерность Ом·мм²/м. Зная размеры кабеля, его сопротивление рассчитывается по формуле:

    R=(p*l)/S.

    Кроме электросопротивления, в некоторых формулах используется понятие “проводимость”. Это величина, обратная сопротивлению. Обозначается она “g” и рассчитывается по формуле:

    g=1/R.

    Проводимость жидкостей

    Проводимость жидкостей отличается от проводимости металлов. Носителями зарядов в них являются ионы. Их количество и электропроводность растут при нагревании, поэтому мощность электродного котла растёт при нагреве от 20 до 100 градусов в несколько раз.

    Интересно. Дистиллированная вода является изолятором. Проводимость ей придают растворенные примеси.

    Электросопротивление проводов

    Самые распространенные металлы для изготовления проводов – медь и алюминий. Сопротивление алюминия выше, но он дешевле меди. Удельное сопротивление меди ниже, поэтому сечение проводов можно выбрать меньше. Кроме того, она прочнее, и из этого металла изготавливаются гибкие многожильные провода.

    В следующей таблице показывается удельное электросопротивление металлов при 20 градусах. Для того чтобы определить его при других температурах, значение из таблицы необходимо умножить на поправочный коэффициент, различный для каждого металла. Узнать этот коэффициент можно из соответствующих справочников или при помощи онлайн-калькулятора.

    Выбор сечения кабеля

    Сопротивление медного провода

    Поскольку у провода есть сопротивление, при прохождении по нему электрического тока выделяется тепло, и происходит падение напряжения. Оба этих фактора необходимо учитывать при выборе сечения кабелей.

    Выбор по допустимому нагреву

    При протекании тока в проводе выделяется энергия. Её количество можно рассчитать по формуле электрической мощности:

    P=I²*R.

    В медном проводе сечением 2,5мм² и длиной 10 метров R=10*0.0074=0.074Ом. При токе 30А Р=30²*0,074=66Вт.

    Эта мощность нагревает токопроводящую жилу и сам кабель. Температура, до которой он нагревается, зависит от условий прокладки, числа жил в кабеле и других факторов, а допустимая температура – от материала изоляции. Медь обладает большей проводимостью, поэтому меньше выделяемая мощность и необходимое сечение. Определяется оно по специальным таблицам или при помощи онлайн-калькулятора.

    Таблица выбора сечения провода по допустимому нагреву

    Допустимые потери напряжения

    Кроме нагрева, при прохождении электрического тока по проводам происходит уменьшение напряжения возле нагрузки. Эту величину можно рассчитать по закону Ома:

    U=I*R.

    Справка. По нормам ПУЭ оно должно составлять не более 5% или в сети 220В – не больше 11В.

    Поэтому, чем длиннее кабель, тем больше должно быть его сечение. Определить его можно по таблицам или при помощи онлайн-калькулятора. В отличие от выбора сечения по допустимому нагреву, потери напряжения не зависят от условий прокладки и материала изоляции.

    В сети 220В напряжение подаётся по двум проводам: фазному и нулевому, поэтому расчёт производится по двойной длине кабеля. В кабеле из предыдущего примера оно составит U=I*R=30A*2*0.074Ом=4,44В. Это немного, но при длине 25 метров получается 11,1В – предельно допустимая величина, придётся увеличивать сечение.

    Максимально допустимая длина кабеля данного сечения

    Электросопротивление других металлов

    Сопротивление тока: формула

    Кроме меди и алюминия, в электротехнике используются другие металлы и сплавы:

    • Железо. Удельное сопротивление стали выше, но она прочнее, чем медь и алюминий. Стальные жилы вплетаются в кабеля, предназначенные для прокладки по воздуху. Сопротивление железа слишком велико для передачи электроэнергии, поэтому при расчёте сечения жилы не учитываются. Кроме того, оно более тугоплавкое, и из него изготавливаются вывода для подключения нагревателей в электропечах большой мощности;
    • Нихром (сплав никеля и хрома) и фехраль (железо, хром и алюминий). Они обладают низкой проводимостью и тугоплавкостью. Из этих сплавов изготавливаются проволочные резисторы и нагреватели;
    • Вольфрам. Его электросопротивление велико, но это тугоплавкий металл (3422 °C). Из него изготавливаются нити накала в электролампах и электроды для аргонно-дуговой сварки;
    • Константан и манганин (медь, никель и марганец). Удельное сопротивление этих проводников не меняется при изменениях температуры. Применяются в претензионных приборах для изготовления резисторов;
    • Драгоценные металлы – золото и серебро. Обладают самой высокой удельной проводимостью, но из-за большой цены их применение ограничено.

    Индуктивное сопротивление

    Формулы для расчёта проводимости проводов справедливы только в сети постоянного тока или в прямых проводниках при низкой частоте.

    В катушках и в высокочастотных сетях появляется индуктивное сопротивление, во много раз превышающее обычное. Кроме того, ток высокой частоты распространяется только по поверхности провода.

    Поэтому его иногда покрывают тонким слоем серебра или используют литцендрат.

    Справка. Литцендрат – это многожильный провод, каждая жила в котором изолирована от остальных. Это делается для увеличения поверхности и проводимости в сетях высокой частоты.

    Удельное сопротивление меди, гибкость, относительно невысокая цена и механическая прочность делают этот металл, вместе с алюминием, самым распространенным материалом для изготовления проводов.

    Характеристики при повышенных температурах

    Температура, °C6007008009001000
    Предел прочности, МПа3802701709050
    Температура, °C550600650700800
    Предел текучести, МПа12080503010

    Сопротивление коррозии в кислотных средах

    Температура, °C2080
    Концентрация, % к массе10204060801001020406080100
    Серная кислота222210222222
    Фосфорная кислота000002000012
    Азотная кислота000020000012
    Муравьиная кислота000000011210

    0

    = высокая степень защиты (скорость коррозии не превышает 100 mm/год);

    1

    = частичная защита (скорость коррозии составляет от 100m до 1000 mm/год);

    2

    = нет защиты (скорость коррозии превышает 1000 mm/год).

    Способы определения и контроля показателей прочности металлов

    Развитие металлургии и других сопутствующих направлений по изготовлению предметов из металла обязано созданию оружия. Сначала научились выплавлять цветные металлы, но прочность изделий была относительно невысокой. Только с появлением железа и его сплавов началось изучение их свойств.

    Первые мечи для придания им твердости и прочности делали довольно тяжелыми. Воинам приходилось брать их в обе руки, чтобы управляться с ними.

    Со временем появились новые сплавы, разрабатывались технологии производства. Легкие сабли и шпаги пришли на замену тяжеловесному оружию. Параллельно создавались орудия труда.

    С повышением прочностных характеристик совершенствовались инструменты и способы производства.

    Виды нагрузок

    При использовании металлов прилагаются разные нагрузки статического и динамического воздействия. В теории прочности принято определять нагружения следующих видов.

    • Сжатие – действующая сила сдавливает предмет, вызывая уменьшение длины вдоль направления приложения нагрузки. Такую деформацию ощущают станины, опорные поверхности, стойки и ряд других конструкций, выдерживающих определённый вес. Мосты и переправы, рамы автомобилей и тракторов, фундаменты и арматура, – все эти конструктивные элементы находятся при постоянном сжатии.
    • Растяжение – нагрузка стремится удлинить тело в определенном направлении. Подъемно-транспортные машины и механизмы испытывают подобные нагружения при подъеме и переноске грузов.
    • Сдвиг и срез – такое нагружение наблюдается в случае действия сил, направленных вдоль одной оси навстречу друг другу. Соединительные элементы (болты, винты, заклепки и другие метизы) испытывают нагрузку подобного вида. В конструкции корпусов, металлокаркасов, редукторов и других узлов механизмов и машин обязательно имеются соединительные детали. От их прочности зависит работоспособность устройств.
    • Кручение – если на предмет действует пара сил, находящихся на определенном расстоянии друг от друга, то возникает крутящий момент. Эти усилия стремятся произвести скручивающую деформацию. Подобные нагружения наблюдаются в коробках передач, валы испытывают именно такую нагрузку. Она чаще всего непостоянная по значению. В течение времени величина действующих сил меняется.
    • Изгиб – нагрузка, которая изменяет кривизну предметов, считается изгибающей. Мосты, перекладины, консоли, подъемно-транспортные механизмы и другие детали испытывают подобное нагружение.

    В середине XVII века одновременно в нескольких странах начались исследования материалов. Предлагались самые разные методики по определению прочностных характеристик. Английский исследователь Роберт Гук (1660 г.) сформулировал основные положения закона по удлинению упругих тел в результате приложения нагрузки (закона Гука). Введены и понятия:

    1. Напряжения σ, которое в механике измеряется в виде нагрузки, приложенной к определенной площади (кгс/см², Н/м², Па).
    2. Модуля упругости Е, который определяет способность твердого тела деформироваться под действием нагружения (приложения силы в заданном направлении). Единицы измерения также определяются в кгс/см² (Н/м², Па).

    Формула по закону Гука записывается в виде ε = σz/E, где:

    • ε – относительное удлинение;
    • σz – нормальное напряжение.

    Демонстрация закона Гука для упругих тел:

    Из приведенной зависимости выводится значение Е для определенного материала опытным путем, Е = σz/ε.

    Модуль упругости – это постоянная величина, характеризующая сопротивление тела и его конструкционного материала при нормальной растягивающей или сжимающей нагрузке.

    В теории прочности принято понятие модуль упругости Юнга. Это английский исследователь дал более конкретное описание способам изменения прочностных показателей при нормальных нагружениях.

    Значения модуля упругости для некоторых материалов приведены в таблице 1.

    Таблица 1: Модуль упругости для металлов и сплавов

    Наименование материалаЗначение модуля упругости, 10¹²·Па
    Алюминий65…72
    Дюралюминий69…76
    Железо, содержание углерода менее 0,08 %165…186
    Латунь88…99
    Медь (Cu, 99 %)107…110
    Никель200…210
    Олово32…38
    Свинец14…19
    Серебро78…84
    Серый чугун110…130
    Сталь190…210
    Стекло65…72
    Титан112…120
    Хром300…310

    Модуль упругости для разных марок стали

    Металлурги разработали несколько сотен марок сталей. Им свойственны разные значения прочности. В таблице 2 показаны характеристики для наиболее распространенных сталей.

    Таблица 2: Упругость сталей

    Наименование сталиЗначение модуля упругости, 10¹²·Па
    Сталь низкоуглеродистая165…180
    Сталь 3179…189
    Сталь 30194…205
    Сталь 45211…223
    Сталь 40Х240…260
    65Г235…275
    Х12МФ310…320
    9ХС, ХВГ275…302
    4Х5МФС305…315
    3Х3М3Ф285…310
    Р6М5305…320
    Р9320…330
    Р18325…340
    Р12МФ5297…310
    У7, У8302…315
    У9, У10320…330
    У11325…340
    У12, У13310…315

    : закон Гука, модуль упругости.

    Модули прочности

    Кроме нормального нагружения, существуют и иные силовые воздействия на материалы.

    Модуль сдвига G определяет жесткость. Эта характеристика показывает предельное значение нагрузки изменению формы предмета.

    Модуль объемной упругости К определяет упругие свойства материала изменить объем. При любой деформации происходит изменение формы предмета.

    Коэффициент Пуассона μ определяет изменения отношение величины относительного сжатия к растяжению. Эта величина зависит только от свойств материала.

    Для разных сталей значения указанных модулей приведены в таблице 3.

    Таблица 3: Модули прочности для сталей

    Наименование сталиМодуль упругости Юнга, 10¹²·ПаМодуль сдвига G, 10¹²·ПаМодуль объемной упругости, 10¹²·ПаКоэффициент Пуассона, 10¹²·Па
    Сталь низкоуглеродистая165…18087…9145…49154…168
    Сталь 3179…18993…10249…52164…172
    Сталь 30194…205105…10872…77182…184
    Сталь 45211…223115…13076…81192…197
    Сталь 40Х240…260118…12584…87210…218
    65Г235…275112…12481…85208…214
    Х12МФ310…320143…15094…98285…290
    9ХС, ХВГ275…302135…14587…92264…270
    4Х5МФС305…315147…16096…100291…295
    3Х3М3Ф285…310135…15092…97268…273
    Р6М5305…320147…15198…102294…300
    Р9320…330155…162104…110301…312
    Р18325…340140…149105…108308…318
    Р12МФ5297…310147…15298…102276…280
    У7, У8302…315154…160100…106286…294
    У9, У10320…330160…165104…112305…311
    У11325…340162…17098…104306…314
    У12, У13310…315155…16099…106298…304

    Для других материалов значения прочностных характеристик указывают в специальной литературе. Однако, в некоторых случаях проводят индивидуальные исследования. Особенно актуальны подобные исследования для строительных материалов. На предприятиях, где выпускают железобетонные изделия, регулярно проводят испытания по определению предельных значений.

    Сфера применения AISI 304

    Нержавейка AISI 304 (18 Cr-8 Ni), благодаря своей высокой устойчивости к окислению и высоким температурам, нашла широкое применение:

    • в химической и фармакологической промышленности;
    • в пищевой, молочной и пивоваренной промышленности;
    • в медицине (хирургическое оборудование, иглы для инъекций);
    • в производстве судового оборудования и крепежа для атомных судов;
    • в металлопрокате (трубы, уголки, листы, ленты, шестигранники);
    • в нефтяной (сетки фильтра для скважин) и горнодобывающей промышленности;
    • в производстве оборудования для работы в условиях химического воздействия;
    • в возведении конструкций, для которых важны прочность и длительный срок эксплуатации;
    • в текстильной и бумажной промышленности.

    Кроме того, из-за своих отличных технических параметров, гигиенических показателей и приятному эстетичному виду, сталь 304 используют в изготовлении кухонной мебели и столовых приборов; емкостей и контейнеров для хранения жидких и сухих веществ.

    Сталь нержавеющая aisi 304 участвует в производстве катушек охлаждения, криогенных сосудов, холодильного оборудования, сантехнической арматуры, емкостей под давлением и проч.

    Сварка

    Нержавеющая сталь aisi 304 / SS 304 / 18 Cr-8 Ni легко сваривается всеми методами. Последующая тепловая обработка необходима только в том случае, если есть вероятность межкристаллитной коррозии. Проводят ее при 1050-1150°С, шов обязательно зачищают от образовавшейся окалины и пассивируют специальной пастой.

    Модуль упругости стали

    ►Модуль упругости стали ►Модуль упругости разных марок стали ►Таблица модулей прочности марок стали ►Модуль упругости для металлов и сплавов ►Упругость сталей ►Предел прочности
    При проектировании стальных изделий или элементов конструкций учитывают способность сплава выдерживать разнонаправленные виды нагрузок: ударные, изгибающие, растягивающие, сжимающие. Значение модуля упругости стали, наряду с твердостью и другими характеристиками, показывает стойкость к этим воздействиям.

    Например, в железобетонном строительстве используют продольные и поперечные арматурные стержни. В горизонтальной плоскости они подвержены растяжению, а в вертикальной — давлению всей массы конструкции.

    В местах концентрации напряжений: углы, технологические проемы, лифтовые шахты и лестничные пролеты — размещают большее количество арматуры.

    Способность бетона впитывать воду служит причиной постоянных изменений сжимающих и растягивающих нагрузок.

    Рассмотрим другой пример. В военное время создавалось множество разработок в сфере авиации. Самыми частыми причинами катастроф были возгорания двигателей. Отрываясь от земли, самолет попадает в атмосферные слои с разреженным воздухом и его корпус расширяется, обратный процесс происходит при посадке.

    Кроме этого, на конструкцию воздействует сопротивление воздушных потоков, давление искривленных слоев воздуха и другие силы. Несмотря на прочность, существующие в то время сплавы не всегда были пригодны для изготовления ответственных деталей, в основном, это приводило к разрывам топливных баков.

    В различных видах промышленности из стали изготавливают детали подвижных механизмов: пружины, рессоры. Марки, используемые для таких целей, не склонны к трещинообразованию при постоянно изменяющихся нагрузках.

    Упругость твердых тел — это способность принимать исходную форму после прекращения деформирующих воздействий. Например, брусок пластилина обладает нулевой пружинистостью, а резиновые изделия можно сжимать и растягивать. При различных применениях сил к предметам и материалам, они деформируются. В зависимости от физических свойств тела или вещества, различают два вида деформации:

    • Упругая — последствия исчезают по окончании действия внешних сил;
    • Пластическая — необратимое изменение формы.

    Модуль упругости — название нескольких физических величин, характеризующих склонность твердого тела деформироваться упруго.

    Впервые понятие было введено Томасом Юнгом. Ученый подвешивал грузы к металлическим стержням и наблюдал за их удлинением. У части образцов длина увеличилась в два раза, другие — были разорваны в ходе эксперимента.

    Сегодня определение объединяет ряд свойств физических тел:

    Модуль Юнга: Вычисляется по формуле E= σ/ε, где σ — напряжение, равное силе, деленной на площадь ее приложения, а ε — упругая деформация, эквивалентная отношению удлинения образца с начала деформации и сжатию после ее прекращения.

    Модуль сдвига (G или μ): способность сопротивляться деформации при сохранении объема, когда направление нагрузок производится по касательной. Например, при ударе по шляпке гвоздя, если он был произведен не под прямым углом, изделие искривляется. В сопромате величину используют для вычисления сдвигов и кручения.

    Модуль объемной упругости или объемного сжатия (К): изменения, вызванные действием всестороннего напряжения, например, гидростатического давления.

    Коэффициент Пуансона (Ⅴ или μ): отношение поперечного сжатия к продольному удлинению, вычисляется для образцов материалов. У абсолютно хрупких веществ он равен нулю.

    Константа Ламе: энергия, провоцирующая возвращение в исходную форму, вычисляется через построение скалярных комбинаций.

    Модуль упругости стали соотносится с рядом других физических величин. Например, при проведении эксперимента на растяжение, важно учитывать предел прочности, превышение которого оборачивается разрушением детали.

    • Соотношение жесткости и пластичности;
    • Ударная вязкость;
    • Предел текучести;
    • Относительное сжатие и растяжение (продольное и поперечное);
    • Пределы прочности при ударных, динамических и др. нагрузках.

    Применение ряда подходов обусловлено требованиями к механическим свойствам материалов в разных отраслях промышленности, строительства, приборостроения.

    Модуль упругости разных марок стали

    Наибольшей способностью противостоять деформации обладают рессорно-пружинистые стальные сплавы. Эти материалы характеризуются высоким пределом текучести. Величина показывает напряжение, при котором деформация растет без внешних воздействий, например при сгибании и скручивании.

    Характеристики упругости стали зависят от легирующих элементов и строения кристаллической решетки. Углерод придает стальному сплаву твердость, однако в высоких концентрациях снижается пластичность и пружинистость. Основные легирующие добавки, повышающие упругие свойства: кремний, марганец, никель, вольфрам.

    Нередко, нужных показателей можно достичь лишь с помощью специальных режимов термообработки. Таким образом все фрагменты детали будут иметь единые показатели текучести, а слабые участки будут исключены.

    В противном случае изделие может надломиться, лопнуть или растрескаться.

    Марки 60Г и 65Г обладают такими характеристиками, как сопротивление разрыву, вязкость, стойкость к износу, они применяются для изготовления промышленных пружин и музыкальных струн.

    В металлургической промышленности создано несколько сотен марок стали с разными модулями упругости. В таблице приведены характеристики популярных сплавов.

    Таблица модулей прочности марок стали

    Наименование сталиМодуль упругости Юнга, 10¹²·ПаМодуль сдвигаG, 10¹²·ПаМодуль объемной упругости, 10¹²·ПаКоэффициент Пуассона, 10¹²·Па
    Сталь низкоуглеродистая165…18087…9145…49154…168
    Сталь 3179…18993…10249…52164…172
    Сталь 30194…205105…10872…77182…184
    Сталь 45211…223115…13076…81192…197
    Сталь 40Х240…260118…12584…87210…218
    65Г235…275112…12481…85208…214
    Х12МФ310…320143…15094…98285…290
    9ХС, ХВГ275…302135…14587…92264…270
    4Х5МФС305…315147…16096…100291…295
    3Х3М3Ф285…310135…15092…97268…273
    Р6М5305…320147…15198…102294…300
    Р9320…330155…162104…110301…312
    Р18325…340140…149105…108308…318
    Р12МФ5297…310147…15298…102276…280
    У7, У8302…315154…160100…106286…294
    У9, У10320…330160…165104…112305…311
    У11325…340162…17098…104306…314
    У12, У13310…315155…16099…106298…304

    Модуль упругости для металлов и сплавов

    Наименование материалаЗначение модуля упругости, 10¹²·Па
    Алюминий65—72
    Дюралюминий69—76
    Железо, содержание углерода менее 0,08 %165—186
    Латунь88—99
    Медь (Cu, 99 %)107—110
    Никель200—210
    Олово32—38
    Свинец14—19
    Серебро78—84
    Серый чугун110—130
    Сталь190—210
    Стекло65—72
    Титан112—120
    Хром300—310

    Упругость сталей

    Наименование сталиЗначение модуля упругости, 10¹²·Па
    Сталь низкоуглеродистая165—180
    Сталь 3179—189
    Сталь 30194—205
    Сталь 45211—223
    Сталь 40Х240—260
    65Г235—275
    Х12МФ310—320
    9ХС, ХВГ275—302
    4Х5МФС305—315
    3Х3М3Ф285—310
    Р6М5305—320
    Р9320—330
    Р18325—340
    Р12МФ5297—310
    У7, У8302—315
    У9, У10320—330
    У11325—340
    У12, У13310—315

    Предел прочности

    Твердые тела способны выдерживать ограниченные нагрузки, превышение предела приводит к разрушению структуры металла, формированию заметных сколов или микротрещин. Возникновение дефектов сопряжено со снижением эксплуатационных свойств или полным разрушением. Прочность сплавов и готовых изделий проверяют на испытательных стендах. Стандартами предусмотрен ряд испытаний:

    • Продолжительное применение деформирующего усилия;
    • Кратковременные и длительные ударные воздействия;
    • Растяжение и сжатие;
    • Гидравлическое давление и др.

    В сложных механизмах и системах выход из строя одного элемента автоматически становится причиной повышения нагрузок на другие. Как правило, разрушения начинаются на тех участках, где напряжения максимальны. Запас прочности служит гарантией безопасности оборудования во внештатных ситуациях и продлевает срок его службы.

    Оцените нашу статью

    [Всего : 1 статьи: 5]

    Общее понятие

    Модуль упругости (также известный как модуль Юнга) – один из показателей механических свойств материала, который характеризует его сопротивляемость деформации растяжения. Другими словами, его значение показывает пластичность материала. Чем больше модуль упругости, тем менее будет растягиваться какой-либо стержень при прочих равных условиях (величина нагрузки, площадь сечения и прочее).

    В теории упругости модуль Юнга обозначается буквой Е. Является составной частью закона Гука (закона о деформации упругих тел). Связывает напряжение, возникающее в материале, и его деформацию.

    Согласно международной стандартной системе единиц измеряется в МПа. Но на практике инженеры предпочитают использовать размерность кгс/см2.

    Определение модуля упругости осуществляется опытным путем в научных лабораториях. Суть данного способа заключается в разрыве на специальном оборудовании гантелеобразных образцов материала. Узнав напряжение и удлинение, при котором произошло разрушение образца, делят данные переменные друг на друга, тем самым получая модуль Юнга.

    Отметим сразу, что таким методом определяются модули упругости пластичных материалов: сталь, медь и прочее. Хрупкие материалы – чугун, бетон – сжимают до появления трещин.

    Дополнительные характеристики механических свойств

    Модуль упругости дает возможность предугадать поведение материла только при работе на сжатие или растяжение. При наличии таких видов нагрузок как смятие, срез, изгиб и прочее потребуется введение дополнительных параметров:

    • Жесткость есть произведение модуля упругости на площадь поперечного сечения профиля. По величине жесткости можно судить о пластичности уже не материала, а узла конструкции в целом. Измеряется в килограммах силы.
    • Относительное продольное удлинение показывает отношение абсолютного удлинения образца к общей длине образца. Например, к стержню длиной 100 мм приложили определенную силу. Как результат, он уменьшился в размере на 5 мм. Деля его удлинение (5 мм) на первоначальную длину (100 мм) получаем относительное удлинение 0,05. Переменная является безразмерной величиной. В некоторых случаях для удобства восприятия переводится в проценты.
    • Относительное поперечное удлинение рассчитывается аналогично вышепредставленному пункту, но вместо длины здесь рассматривается диаметр стержня. Опыты показывают, что для большинства материалов поперечное удлинение в 3-4 раза меньше, чем продольное.
    • Коэффициент Пуансона есть отношение относительной продольной деформации к относительной поперечной деформации. Данный параметр позволяет полностью описать изменение формы под воздействием нагрузки.
    • Модуль сдвига характеризует упругие свойства при воздействии на образец касательных напряжений, т. е. в случае, когда вектор силы направлен под 90 градусов к поверхности тела. Примерами таких нагрузок является работа заклепок на срез, гвоздей на смятие и прочее. По большому счету, модуль сдвига связан с таким понятием как вязкость материла.
    • Модуль объемной упругости характеризуется изменением объема материала для равномерного разностороннего приложения нагрузки. Является отношением объемного давления к объемной деформации сжатия. Примером такой работы служит опущенный в воду образец, на который по всей его площади воздействует давление жидкости.

    Помимо вышесказанного необходимо упомянуть, что некоторые типы материалов имеют различные механические свойства в зависимости от направления нагрузки. Такие материалы характеризуются как анизотропные. Яркими примерами служит древесина, слоистые пластмассы, некоторые виды камня, ткани и прочее.

    У изотропных материалов механические свойства и упругая деформация одинаковы в любом направлении. К ним относят металлы (сталь, чугун, медь, алюминий и прочее), неслоистые пластмассы, естественные камни, бетон, каучук.

    Значение модуля упругости

    Необходимо заметить, что модуль Юнга не является постоянной величиной. Даже для одного и того же материала он может колебаться в зависимости от точек приложения силы.

    https://www.youtube.com/watch?v=ZyK3nd4Ndks

    Некоторые упруго – пластичные материалы обладают более или менее постоянным модулем упругости при работе как на сжатие, так и на растяжение: медь, алюминий, сталь. В других случаях упругость может изменяться исходя из формы профиля.

    Вот примеры значений модуля Юнга (в миллионах кгссм2) некоторых материалов:

    • Чугун белый – 1,15.
    • Чугун серый -1,16.
    • Латунь – 1,01.
    • Бронза – 1,00.
    • Кирпичная каменная кладка – 0,03.
    • Гранитная каменная кладка – 0,09.
    • Бетон – 0,02.
    • Древесина вдоль волокон – 0,1.
    • Древесина поперек волокон – 0,005.
    • Алюминий – 0,7.

    Рассмотрим разницу в показаниях между модулями упругости для сталей в зависимости от марки:

    • Стали конструкционные высокого качества (20, 45) – 2,01.
    • Стали обычного качества (Ст.3, Ст.6) – 2,00.
    • Стали низколегированные (30ХГСА, 40Х) – 2,05.
    • Стали нержавеющие (12Х18Н10Т) – 2,1.
    • Стали штамповые (9ХМФ) – 2,03.
    • Стали пружинные (60С2) – 2,03.
    • Стали подшипниковые (ШХ15) – 2,1.

    Также значение модуля упругости для сталей изменяется исходя из вида проката:

    • Проволока высокой прочности – 2,1.
    • Плетенный канат – 1,9.
    • Трос с металлическим сердечником – 1,95.

    Как видим, отклонения между сталями в значениях модулей упругой деформации имеют небольшую величину. Поэтому в большинстве инженерных расчетов можно пренебречь погрешностями и брать значение Е=2,0.

    ТЕПЛОВАЯ ОБРАБОТКА

    Эксперимент проводился при высоких температурах в диапазоне от 1010°С до 1120°С с дальнейшим охлаждением в воде или воздухе (быстрый отпуск). Согласно исследованиям сопротивление оказывалось оптимальным при отжиге при температуре 1070°С с последующим быстрым охлаждением.

    Отпуск (снятие напряжения)

    Исследования проводились в течение часа для марки 304L при температуре 450–600°C в при минимальном риске сенситизации. Рекомендованная температура 400°С (максимальный температурный режим).

  • Горячая обработка (интервал ковки)
    1. Начальная температура: 1150–1260°C.
    2. Конечная температура: 900–925°C.

    При любой горячей обработке применяется метод отжига. Особое внимание следует уделить времени прогрева нержавеющей стали для достижения однородности прогрева: нержавейка прогревается примерно в 12 раз дольше, чем углеродистые стали.

    ХОЛОДНАЯ ОБРАБОТКА

    Благодаря таким качествам, как прочность, пластичность и упругость марки 304 и 304L широко применяются при холодной обработке. В качестве методов используются формовка растяжением, изгиб или ротационная и глубокая вытяжка.

    При использовании метода формовки используются те же машины и инструменты, что и при работе с углеродистой сталью, но с приложением большей силы (на 50–100%). Причина в том, что при формовке аустенитной стали свойственно усиленное упрочнение.

    Примерные пределы изгиба (s = толщина листа, r = радиус изгиба):

    Классификация

    Современная нержавеющая проволока изготавливается не просто из стали с минимальным уровнем коррозии. Это всегда еще и легированный на высоком уровне, стойкий к сильному нагреву материал. Универсальную длинную конструкцию легко распознать – она похожа на нить или струну. Преимущественно нержавеющая проволока имеет в сечении форму круга. Она используется самыми разными сферами, поэтому представлена целым рядом модификаций.

    Большой популярностью пользуется вязальная проволока. Ее используют для фиксации арматуры — и неудивительно, что этот материал не должен ржаветь при нормальной эксплуатации как можно дольше. Основные требования озвучены в ГОСТ 3282-74. Специалисты давно отмечают, что чем толще арматура, тем больше должно быть и сечение применяемой проволоки. Располагать ее надо максимально равномерно, потому что иначе нагрузки будут распределены неправильно.

    Но нержавеющей может быть и сварочная проволока. Такой материал ценен тем, что готовый сварной шов тоже имеет отличные антикоррозионные свойства. В основном специальное стальное волокно используют для автоматизированного полностью или частично сварочного процесса. Оно пригодится и для работы в атмосфере инертного газа, и для сварки порошкообразного металла.

    Механические свойства

    Сталь AISI 304 легко поддается обработке в горячем и холодном состоянии, отлично сваривается различными способами.

    Международный стандартСопротивление на разрыв (σB), Н/мм²Предел текучести (σ0,2), Н/мм²Предел текучести (σ1,0), Н/мм²Относительное удлинение (σ), %Твердость по Бринеллю (HB)Твердость по Роквеллу (HRB)
    EN 10088-2≥520≥210≥250≥45
    ASTM A 240≥515≥205≥4020285

    ГОСТы и ТУ на сплав 06ХН28МДТ

    ГОСТ 1133-71 “Сталь кованая круглая и квадратная. Сортамент”; ГОСТ 25054-81 “Поковки из коррозионно-стойких сталей и сплавов. Общие технические условия.”; ГОСТ 4986-79 “Лента холоднокатаная из коррозионно-стойкой и жаростойкой стали. Технические условия”; ГОСТ 5582-75 “Прокат тонколистовой коррозионно-стойкий, жаростойкий и жаропрочный. Технические условия”; ГОСТ 5632-72 “Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные. Марки”; ГОСТ 5949-75 “Сталь сортовая и калиброванная коррозионностойкая, жаростойкая и жаропрочная. Технические условия”; ГОСТ 7350-77 “Сталь толстолистовая коррозионно-стойкая, жаростойкая и жаропрочная. Технические условия”; ГОСТ 9940-81 “Трубы бесшовные горячедеформированные из коррозионно-стойкой стали. Технические условия”; ГОСТ 9941-81 “Трубы бесшовные холодно- и теплодеформированные из коррозионно-стойкой стали. Технические условия”; ТУ 14-3-763-78 ; ТУ 14-3-822-79 ; ГОСТ 4405-75 “Полосы горячекатаные и кованые из инструментальной стали. Сортамент.”; ГОСТ 14955-77 “Сталь качественная круглая со специальной отделкой поверхности. Технические условия.”; ГОСТ 2590-2006 “Прокат сортовой стальной горячекатаный круглый. Сортамент.”; ГОСТ 2591-2006 “Прокат сортовой стальной горячекатаный квадратный. Сортамент.”; ГОСТ 7417-75 “Сталь калиброванная круглая. Сортамент.”; ГОСТ 4405-75 “Полосы горячекатаные и кованые из инструментальной стали. Сортамент.”; ГОСТ 8559-75 “Сталь калиброванная квадратная. Сортамент.”; ГОСТ 8560-78 “Прокат калиброванный шестигранный. Сортамент.”; ГОСТ 1133-71 “Сталь кованая круглая и квадратная. Сортамент.”; ГОСТ 5632-72 “Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные. Марки.”; ГОСТ 103-2006 “Прокат сортовой стальной горячекатаный полосовой. Сортамент.”; ГОСТ 5949-75 “Сталь сортовая и калиброванная коррозионно-стойкая, жаростойкая и жаропрочная. Технические условия.”; ТУ 14-11-245-88 “Профили стальные фасонные высокой точности. Технические условия.”; ОСТ 3-1686-90 “Заготовки из конструкционной стали для машиностроения. Общие технические условия.”;

    Характеристика материала. Сталь 06ХН28МДТ (ЭИ943, AISI 904L)

    Химический состав в % материала 06ХН28МДТ (ЭИ943). ГОСТ 5632-72

    Механические свойства стали 06ХН28МДТ (0Х23Н28М3Д3Т ЭИ943, AISI 904L )при Т=20oС

    Механические свойства стали 06ХН28МДТ (0Х23Н28М3Д3Т ЭИ943, AISI 904L ) при низких и повышенных температурах (лист 12,0 мм, закалка с 1050 °С)

    Механические свойства стали 06ХН28МДТ (0Х23Н28М3Д3Т ЭИ943, AISI 904L) при высоких температурах (лист 16,0 мм, закалка с 1050 °С в воде)

    Механические свойства стали 06ХН28МДТ (0Х23Н28М3Д3Т ЭИ943, AISI 904L) при 20 °С в зависимости от степени холодной пластической деформации

    Общая характеристика стали 06ХН28МДТ (0Х23Н28М3Д3Т ЭИ943, AISI 904L)

    Аналоги специальных коррозионностойких аустенитных ( супер-аустенитнтная нержавейка) сталей, предназначенных для эксплуатации в средах, подверженных высокоагрессивной влажной или высокотемпературной коррозии, а также для областей применения, в которых требуется сочетание высокой прочности и коррозионной стойкости

    Физические характеристики стали 06ХН28МДТ (0Х23Н28М3Д3Т ЭИ943, AISI 904L) при Т=0-900 град Цельсия

    Аналоги[править | править код]

    Российские аналоги стали: AISI 304 по ГОСТ – 08Х18Н10, AISI 304L – 03Х18Н11.

    Аналоги и наименования стали: AISI304, AISI 304, T304, 304 Т, SUS304, SS304, 304SS, 304 СС, UNS S30400, AMS 5501, AMS 5513, AMS 5560, AMS 5565, AMS 5566, AMS 5567, AMS 5639, AMS 5697, ASME SA182, ASME SA194 (8), ASME SA213, ASME SA240, ASME SA249, ASME SA312, ASME SA320 (В8), ASME SA358, ASME SA376, ASME SA403, ASME SA409, ASME SA430, ASME SA479, ASME SA688, ASTM A167, ASTM A182, ASTM A193, ASTM A194, ASTM A666, FED QQ-S-763, Milspec MIL-S-5059, SAE 30304, DIN 1.4301, X5CrNi189, BS 304 S 15, EN 58E, PN 86020 (Польша), OH18N9, ISO 4954 X5CrNi189E, ISO 683 / 13 11, 18-8

    Рейтинг
    ( 2 оценки, среднее 4.5 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]