Рассмотрены не сложные схемы цифровых вольтметра и амперметра, построенных без использования микроконтроллеров на микросхемах СА3162, КР514ИД2. Обычно, у хорошего лабораторного блока питания есть встроенные приборы, — вольтметр и амперметр. Вольтметр позволяет точно установить выходное напряжение, а амперметр покажет ток через нагрузку.
В старых лабораторных блоках питания были стрелочные индикаторы, но сейчас должны быть цифровые. Сейчас радиолюбители чаще всего делают такие приборы на основе микроконтроллера или микросхем АЦП вроде КР572ПВ2, КР572ПВ5.
Микросхема СА3162Е
Но существуют и другие микросхемы аналогичного действия. Например, есть микросхема СА3162Е, которая предназначена для создания измерителя аналоговой величины с отображением результата на трехразрядном цифровом индикаторе.
Микросхема СА3162Е представляет собой АЦП с максимальным входным напряжением 999 mV (при этом показания «999») и логической схемой, которая выдает сведения о результате измерения в виде трех поочередно меняющихся двоично-десятичных четырехразрядных кодов на параллельном выходе и трех выходах для опроса разрядов схемы динамической индикации.
Чтобы получить законченный прибор нужно добавить дешифратор для работы на семисегментный индикатор и сборку из трех семисегментных индикаторов, включенных в матрицу для динамической индикации, а так же, трех управляющих ключей.
Тип индикаторов может быть любым, -светодиодные, люминесцентные, газоразрядные, жидкокристаллические, все зависит от схемы выходного узла на дешифраторе и ключах. Здесь используется светодиодная индикация на табло из трех семисегментных индикаторов с общими анодами.
Индикаторые включены по схеме динамической матрицы, то есть, все их сегментные (катодные) выводы включены параллельно. А для опроса, то есть, последовательного переключения, используются общие анодные выводы.
Улучшение теплоотвода
Первый недостаток, которым грешит подавляющее большинство недорогих инверторных аппаратов — плохая схема отвода тепла с силовых ключей и выпрямительных диодов. Начинать доработку в этом направлении лучше с увеличения интенсивности принудительного обдува. Как правило, в сварочных аппаратах устанавливают корпусные вентиляторы с питанием от служебных цепей напряжением 12 В. В «компактных» моделях принудительное воздушное охлаждение может вовсе отсутствовать, что для электротехники такого класса, безусловно, нонсенс.
Достаточно просто увеличить воздушный поток путём установки нескольких таких вентиляторов последовательно. Проблема в том, что «родной» кулер скорее всего придётся снять. Чтобы эффективно работать в последовательной сборке, вентиляторы должны иметь идентичную форму и число лопастей, а также скорость вращения. Собрать одинаковые кулеры в «стопку» крайне просто, достаточно стянуть их парой длинных болтов по диаметрально противоположным угловым отверстиям. Также не стоит беспокоиться о мощности источника служебного питания, как правило её достаточно для установки 3–4 вентиляторов.
Принципиальная схема вольтметра
Теперь ближе к схеме. На рисунке 1 показана схема вольтметра, измеряющего напряжение от 0 до 100V (0…99,9V). Измеряемое напряжение поступает на выводы 11-10 (вход) микросхемы D1 через делитель на резисторах R1-R3.
Конденсатор C3 исключает влияние помех на результат измерения. Резистором R4 устанавливают показания прибора на ноль, при отсутствии входного напряжения А резистором R5 выставляют предел измерения так чтобы результат измерения соответствовал реальному, то есть, можно сказать, им калибруют прибор.
Рис. 1. Принципиальная схема цифрового вольтметра до 100В на микросхемах СА3162, КР514ИД2.
Теперь о выходах микросхемы. Логическая часть СА3162Е построена по логике ТТЛ, а выходы еще и с открытыми коллекторами. На выходах «1-2-4-8» формируется двоичнодесятичный код, который периодически сменяется, обеспечивая последовательную передачу данных о трех разрядах результата измерения.
Если используется дешифратор ТТЛ, как, например, КР514ИД2, то его входы непосредственно подключаются к данным входам D1. Если же будет применен дешифратор логики КМОП или МОП, то его входы будет необходимо подтянуть к плюсу при помощи резисторов. Это нужно будет сделать, например, если вместо КР514ИД2 будет использован дешифратор К176ИД2 или CD4056.
Выходы дешифратора D2 через токоограничивающие резисторы R7-R13 подключены к сегментным выводам светодиодных индикаторов Н1-НЗ. Одноименные сегментные выводы всех трех индикаторов соединены вместе. Для опроса индикаторов используются транзисторные ключи VT1-VT3, на базы которых подаются команды с выходов Н1-НЗ микросхемы D1.
Эти выводы тоже сделаны по схеме с открытым коллектором. Активный ноль, поэтому используются транзисторы структуры р-п-р.
Модификации переменного тока
Амперметр (цифровой) переменного тока можно сделать самостоятельно. Микроконтроллеры у моделей используются с выпрямителями. Для увеличения точности измерения применяются фильтры широкополосного типа. Сопротивление шунта в данном случае не должно быть меньше 2 Ом. Чувствительность у резисторов обязана составлять 3 мк. Стабилизаторы чаще всего устанавливаются расширительного типа. Также важно отметить, что для сборки понадобится триод. Припаивать его необходимо непосредственно к компаратору. Допустимая ошибка приборов данного типа колеблется в районе 0.2 %.
Принципиальная схема амперметра
Схема амперметра показана на рисунке 2. Схема практически такая же, за исключением входа. Здесь вместо делителя стоит шунт на пятиваттном резисторе R2 сопротивлением 0,1 От. При таком шунте прибор измеряет ток до 10А (0…9.99А). Установка на ноль и калибровка, как и в первой схеме, осуществляется резисторами R4 и R5.
Рис. 2. Принципиальная схема цифрового амперметра до 10А и более на микросхемах СА3162, КР514ИД2.
Выбрав другие делители и шунты можно задать другие пределы измерения, например, 0…9.99V, 0…999mA, 0…999V, 0…99.9А, это зависит от выходных параметров того лабораторного блока питания, в который будут установлены эти индикаторы. Так же, на основе данных схем можно сделать и самостоятельный измерительный прибор для измерения напряжения и тока (настольный мультиметр).
При этом нужно учесть, что даже используя жидкокристаллические индикаторы прибор будет потреблять существенный ток, так как логическая часть СА3162Е построена по ТТЛ-логике. Поэтому, хороший прибор с автономным питанием вряд ли получится. А вот автомобильный вольтметр (рис.4) выйдет неплохой.
Питаются приборы постоянным стабилизированным напряжением 5V. В источнике питания, в который будут они установлены, необходимо предусмотреть наличие такого напряжения при токе не ниже 150mA.
Как подключить вольтамперметр к зарядному устройству — подборка схем
На рисунках 4.3 и 4.4 приведены схемы включения вольтметра и амперметра через измерительные трансформаторы напряжения (ТН) и тока (ТТ) соответственно.
?/,, U2_
первичное и вторичное напряжения ТН;
Wv W2
— первичная и вторичная обмотки ТН;
V
— вольтметр
Рис. 4.4.
Измерительный трансформатор тока. Схема включения амперметра:
/р /2 — первичный и вторичный токи ТТ; Wv W2
— первичная и вторичная обмотки ТТ;
А
— амперметр
Присоединять амперметр к источнику тока (питания) без нагрузки нельзя, так как по его обмотке в этом случае пройдет большой ток, и она может перегореть. По той же причине нельзя включать амперметр параллельно нагрузке.
Каждый амперметр рассчитан на определенный максимальный ток, при превышении которого амперметр может перегореть. Если амперметром нужно измерить ток, превышающий допустимый для данного амперметра, то параллельно амперметру присоединяют шунт, т.е. расширяют пределы измерения амперметра.
Шунт представляет собой относительно малое, но точно известное сопротивление. Схема включения амперметра с шунтом показана на рис. 4.5, а.
Шунт должен иметь четыре зажима для устранения влияния на сопротивление шунта переходных сопротивлений контактов. Шунты изготовляют из манганина — сплава, у которого температурный коэффициент сопротивления практически равен нулю.
Рис. 4.5.
Схема включения амперметра:
а —
с шунтом;
6
— через трансформатор тока; для схемы
а: 1 —
шунт;
2
— нагрузка;
для схемы б: 1
— измерительный трансформатор тока;
2
— нагрузка
Рис. 4.6. Схема соединения трех амперметров через два трансформатора тока:
Л j и Л2 — начало и конец первичной обмотки трансформатора тока; И, и И2 — начало и конец вторичной обмотки трансформатора тока; Л
— амперметры;
iA, iB, ic —
токи в фазах
Рис. 4.7.
Схема включения вольтметра:
На рисунке 4.6 приведена схема соединения трех амперметров через два трансформатора тока.
Как видно из схемы, через первый амперметр проходит ток iA,
через второй —
iB,
следовательно, ток в третьем амперметре, равный сумме двух линейных токов
iA
и
iB,
равен третьему линейному току:
ic= iA
+
iB.
Схемы самодельных цифровых вольтметра и амперметра (СА3162, КР514ИД2)
Измерительные шунты производят из манганина. В зависимости от конструктивного исполнения бывают:
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»
Шунт для амперметра. Или как сделать вольтметр из амперметра и наоборот. Источники питания — Каталог статей — Основы робототехники Л j и Л 2 начало и конец первичной обмотки трансформатора тока; И, и И 2 начало и конец вторичной обмотки трансформатора тока; Л амперметры; i A , i B , i c токи в фазах. Спрашивайте, я на связи!
Подключение прибора
На рисунке 3 показана схема подключения измерителей в лабораторном источнике.
Рис. 3. Схема подключения измерителей в лабораторном источнике.
Рис.4. Самодельный автомобильный вольтметр на микросхемах.
Гальванометры (аналоговые счетчики)
Аналоговые счетчики располагают иглами, которые поворачиваются, чтобы отмечать на шкале цифры. Это и отличает их от цифровых приборов, выводящих цифровые символы прямо на экран. В центре большинства аналоговых приборов находится гальванометр (G). Ток проходит сквозь него и приводит к пропорциональному перемещению (отклонение иглы).
Гальванометр характеризуется сопротивлением и текущей чувствительностью. Последнее – ток, осуществляющий значительное отклонение иглы гальванометра (максимальный ток). К примеру, гальванометр, чья токовая чувствительность составляет 50 мкА достигает максимального прогиба в 50 мкА.
Если подобный прибор обладает сопротивлением в 20 Ом, то только напряжение V = IR = (50 мкА) (25 Ом) = 1.25 мВ создает полномасштабное считывание. Объединив с ним резисторы, можно рассматривать его в качестве вольтметра или амперметра.
Детали
Пожалуй, самое труднодоставаемое — это микросхемы СА3162Е. Из аналогов мне известна только NTE2054. Возможно есть и другие аналоги, о которых мне не известно.
С остальным значительно проще. Как уже сказано, выходную схему можно сделать на любом дешифраторе и соответствующих индикаторах. Например, если индикаторы будут с общим катодом, то нужно КР514ИД2 заменить на КР514ИД1 (цоколевка такая же), а транзисторы VТ1-VT3 перетащить вниз, подсоединив их коллектора к минусу питания, а эмиттеры к общим катодам индикаторов. Можно использовать дешифраторы КМОП-логики, подтянув их входы к плюсу питания при помощи резисторов.
Модели DMK
Цифровые амперметры и вольтметры данной компании пользуются большим спросом. В ассортименте указанной фирмы имеется множество стационарных моделей. Если рассматривать вольтметры, то они выдерживают максимальное давление 35 кПа. В данном случае транзисторы применяются тороидального типа.
Микроконтроллеры, как правило, устанавливаются с преобразователями. Для лабораторных исследований устройства данного типа подходят идеально. Цифровые амперметры и вольтметры этой компании производятся с защищенными корпусами.
↑ Файлы
Даташит на ICL7107