Лекция по Материаловедению «Производство стали» (СПО)

Железную руду получают привычным способом: открытой или подземной добычей и последующей транспортировкой для первоначальной подготовки, где материал измельчается, промывается и перерабатывается.

Руду засыпают в доменную печь и подвергают струйной обработке горячим воздухом и теплом, который превращает ее в расплавленное железо. Далее оно извлекается из нижней части печи в формы, известные как свиньи, где происходит остывание для получения чугуна. Он превращается в кованое железо или перерабатывается в сталь несколькими способами.

Что такое сталь?

Вначале было железо. Оно является одним из наиболее распространенных металлов в земной коре. Его можно встретить почти везде, в сочетании со многими другими элементами, в виде руды. В Европе начало работы с железом датируется 1700 г. до н.э.

В 1786 году французские ученые Бертолле, Мондж и Вандермонде точно определили, что разница между железом, чугуном и сталью обусловлена различным содержанием углерода. Тем не менее сталь, изготовленная из железа, быстро стала самым важным металлом промышленной революции. В начале XX века мировое производство стали составило 28 миллионов тонн — это в шесть раз больше, чем в 1880 году. К началу Первой мировой войны ее производство составляло 85 миллионов тонн. В течение нескольких десятилетий она практически заменила железо.

Содержание углерода влияет на характеристики металла. Существует два основных вида стали: легированная и нелегированная. Сплав стали относится к химическим элементам, отличным от углерода, добавленного к железу. Таким образом, для создания нержавеющей стали используется сплав 17 % хрома и 8 % никеля.

В настоящее время существует более 3000 каталогизированных марок (химических составов), не считая тех, которые созданы для удовлетворения индивидуальных потребностей. Все они способствуют превращению стали в наиболее подходящий материал для решения задач будущего.

Третья стадия производства – раскисление стали

Происходит восстановление оксида железа, который растворен в жидком металле. Увеличение содержания кислорода в металле при плавке необходимо для осуществления окисления примесей, но в уже готовой стали кислород является вредной примесью, потому что понижает механические свойства стали.
Раскисление сталь осуществляется двумя методами: диффузионным и осаждающим.

Диффузионное раскисление происходит благодаря раскислению шлака. В измельчённом виде ферросилиций, ферромарганец и алюминий переносят на поверхность шлака. Эти раскислители, восстанавливают оксид железа, и при этом сокращают содержание его в шлаке. А значит, оксид железа, который растворен в стали переходит в этот шлак. Оксиды, которые образуются при таком процессе, остаются в шлаке, а железо, уже в восстановленном виде, переходит в сталь, а в ней уменьшается содержание неметаллических включений и увеличивается ее качество.

Осаждающее раскисление происходит благодаря введению в жидкую сталь растворимых раскислителей (ферросилиция, ферромарганца, алюминия), которые содержат элементы, обладающие более высоким сродством к кислороду, в сравнении с железом. В конце концов, после раскисления восстанавливается железо и создаются оксиды: SiO2, MnO, Al2O5, имеющие меньшую плотность,в сравнении со сталью, и выводятся в шлак.

В зависимости от уровня раскисления можно выплавлять такие виды стали: — кипящие – не полностью раскислены в печи. Раскисление такой стали продолжается в изложнице при затвердевании слитка, за счет взаимодействия углерода и оксида железа: FeO + C = Fe + CO.

Оксид углерода, который образовался, выводится из стали, обеспечивая удалению водорода и азота из стали, газы выводятся в виде пузырьков, приводя её к кипению. Кипящая сталь не имеет неметаллических включений, поэтому отличается высокой степенью пластичности.

  • спокойные — получается при абсолютном раскислении в ковше и в печи.
  • полуспокойные – отличаются промежуточной раскисленностью между кипящей и спокойной сталями. Частично раскисляется в ковше и в печи, а частично – в изложнице, за счет взаимодействия углерода и оксида желез, которые содержатся в стали.

Легирование стали происходит введением чистых металлов или ферросплавов в определенном количестве в расплав. Легирующие элементы, которые имеют меньше сродство к кислороду, чем у железа (Co, Ni, Cu, Mo), при разливке и плавке не окисляются, и поэтому их вводят в какое-либо время плавки. Легирующие элементы, которые имеют большее сродство к кислороду, чем у железа (Mn, Si, Cr, Al, Ti , V), в металл вводят после раскисления или вместе с ним на окончательном этапе плавки, а иногда и в ковш.

Сырье для выплавки стали: первичное и вторичное

Выплавка данного металла с использованием многих компонентов – самый распространенный способ добычи. Шихтовые материалы могут быть как первично используемые, так и вторично. Основной состав шихты, как правило, составляет 55 % чугуна и 45 % оставшегося металлолома. Ферросплавы, переделанный чугун и технически чистые металлы используются как основной элемент сплава, ко вторичным, как правило, относят все виды черного металла.

Железная руда является самым важным и основным сырьем в черной металлургии. Для производства тонны чугуна требуется около 1,5 тонны этого материала. Для производства одной тонны чугуна используется около 450 тонн кокса. Многие металлургические заводы применяют даже древесный уголь.

Вода — важное сырье для черной металлургии. Она в основном используется для закалки кокса, охлаждения доменных печей, производства пара в дверях угольной печи, работы гидравлического оборудования и удаления сточных вод. Для производства тонны стали требуется около 4 тонн воздуха. Флюс используется в доменной печи для извлечения загрязнений из плавильной руды. Известняк и доломит объединяются с экстрагированными примесями с образованием шлака.

Как дутьевые, так и стальные печи, облицованы огнеупорами. Они используются для облицовочных печей, предназначенных для плавки железной руды. Диоксид кремния или песок используется для формования. Для производства стали различных марок применяют цветные металлы: алюминий, хром, кобальт, медь, свинец, марганец, молибден, никель, олово, вольфрам, цинк, ванадий и др. Среди всех этих ферросплавов марганец широко используется в выплавке стали.

Железные отходы, полученные из демонтированных конструкций заводов, механизмов, старых транспортных средств и т. д., перерабатываются и широко используются в этой отрасли.

Разработка месторождений

Существует несколько методов добычи руды. Применяют тот, который находят наиболее экономически целесообразным.

  • Открытый способ разработки – или карьерный. Рассчитан на неглубокое залегание минеральной породы. Для добычи выкапывают карьер глубиной до 500 м и шириной, зависящей от мощности месторождения. Железную руду извлекают из карьера и транспортируют машинами, рассчитанными на перевозку тяжелых грузов. Как правило, так добывают именно богатую руду, так что необходимости в ее обогащении не возникает.
  • Шахтный – при залегании породы на глубине 600–900 м, бурят шахты. Такая разработка куда более опасна, поскольку связана со взрывными подземными работами: обнаруженные пласты взрывают, а затем собранную руду транспортируют наверх. При всей своей опасности этот метод считается более эффективным.
  • Гидродобыча – в этом случае бурят скважины на определенную глубину. В шахту спускают трубы и подают воду под очень большим давлением. Водная струя дробит породу, а затем железную руду поднимают на поверхность. Скважинная гидродобыча мало распространена, так как требует больших затрат.

Далее рассмотрены технология, процессы изготовления железа.

Чугун для стали

Выплавку стали с использованием чугуна производят гораздо чаще, чем с другими материалами. Чугун — это термин, который обычно относится к серому железу, однако он также идентифицирован с большой группой ферросплавов. Углерод составляет примерно от 2,1 до 4 мас.%, тогда как кремний составляет обычно от 1 до 3 мас.% в сплаве.

Выплавка чугуна и стали проходит при температуре плавления между 1150 и 1200 градусов, что примерно на 300 градусов ниже, чем температура плавления чистого железа. Чугун также демонстрирует хорошую текучесть, отличную обрабатываемость, устойчивость к деформации, окислению и отливке.

Сталь также является сплавом железа с переменным содержанием углерода. Содержание углерода в стали составляет от 0,2 до 2,1 мас.%, И это наиболее экономичный легирующий материал для железа. Выплавка стали из чугуна полезна для различных инженерных и конструкционных целей.

Выплавка стали одношлаковым процессом

Если к стали не предъявляют жестких требований по содержанию серы, а иногда в случае последующей обработке стали в ковше синтетическим шлаком, плавку можно проводить под одним шлаком. Дефосфорация металла совмещается с расплавлением. Окислительный шлак специально из печи не удаляют, а после достижения требуемого содержания углерода и ≤0,035% P в ванну вводят ферросилиций и ферромарганец, а также необходимые легирующие элементы. Окончательно металл раскисляют в ковше кусковым ферросилицием и алюминием в количестве 0,5-1,0 кг/т.

Продолжительность плавки при одношлаковом процессе сокращается на 1-1,5 ч, на 15-20 % снижается расход электроэнергии, уменьшается расход шлакообразующих и ферросплавов и одновременно снижается трудоемкость ведения плавки.

Железная руда для стали

Процесс выплавки стали начинается с переработки железной руды. Породу, содержащую железную руду, измельчают. Руду добывают с использованием магнитных роликов. Мелкозернистая железная руда перерабатывается в крупнозернистые комки для использования в доменной печи. Уголь очищается от примесей в коксовой печи, что дает почти чистую форму углерода. Затем смесь железной руды и угля нагревают для получения расплавленного железа или чугуна, из которого производится сталь.

В основной кислородной печи расплавленная железная руда является основным сырьем и смешивается с различными количествами стального лома и сплавов для производства различных марок стали. В электродуговой печи переработанный стальной лом расплавляется непосредственно в новую сталь. Около 12% стали изготовлено из переработанного материала.

Особенности процесса

Процесс производства стали происходит последовательно в три этапа.

Первый этап – расплавление породы. На этапе его проведения формируется расплав в ванне и окисляется металл, отдавая одновременно кислород кремнию, фосфору и марганцу.

Одна и главных задач этого этапа – удаление фосфора. Для ее осуществления требуется сравнительно невысокая температура и присутствие в достаточном количестве FeO. При взаимодействии ингредиентов фосфорный ангидрид образует с оксидом железа нестойкое соединение (FeO)3 + P2O5.

Присутствие в шлаке более стойкого основания СаО вызывает замещение FeO. В результате оно связывает фосфорный ангидрит в другое соединение (CaO)4 х P2O5 + 4 Fe, чего и требовалось добиться.

Чистый Fe высвободился в расплаве, а фосфор образовал шлак, который удаляется с зеркала металла и утилизируется за ненадобностью. Поскольку фосфорный ангидрид преобразует состав шлака, процесс должен идти непрерывно.

Поэтому FeO должен непрерывно пополняться за счет загрузки новых партий железной руды и окалины, наводящих в расплаве железистый шлак.

Технология выплавки

Плавление — процесс, посредством которого металл получают либо в виде элемента, либо как простое соединение из его руды путем нагревания выше температуры плавления обычно в присутствии окислителей, таких как воздух, или восстановителей, таких как кокс.

В технологии выплавки стали металл, который сочетается с кислородом, например оксидом железа, нагревается до высокой температуры, и оксид образуется в сочетании с углеродом в топливе, выходящим как монооксид углерода или диоксид углерода. Другие примеси, все вместе называемые жилами, удаляются добавлением потока, с которым они объединяются, образуя шлак.

В современных плавках стали используется отражательная печь. Концентрированная руда и поток (обычно известняк) загружаются в верхнюю часть, а расплавленный штейн (соединение меди, железа, серы и шлака) вытягивается снизу. Вторая термообработка в конвертерной печи необходима для удаления железа из матовой поверхности.

Особенности процесса

Вместе с ними загружаются шлакообразующие вещества: известь и бокситы. Корпус охвачен опорным кольцом, прикрепленным к поворотным цапфам. С их помощью сосуд наклоняется и через это отверстие – летку выливается готовая сталь. Нижняя продувка осуществляется через сквозные отверстия (фурмы), сделанные в днище печи.

Исторически повелось, что используемый везде способ называется томасовским, бессемеровским. В прошлом веке преобладающим стал мартеновский процесс. Нагрев регенератора осуществляется продувкой печных газов, после чего он нагревается холодный воздух, поступающий на расплав.

В современных конструкциях чаще применяют верхний способ, при котором продувка на огромной скорости осуществляется через опускаемые к поверхности металла сопла. В России преимущественно используется именно верхняя продувка печей.

Находясь под струей воздуха, чугун интенсивно окисляется в зоне контакта. Поскольку его концентрация значительно больше других примесей, преимущественно образуется оксид железа. Но он растворяется в шлаке. Поэтому металл обогащается выделяемым кислородом.

Окисляются C, Cr и Mn, снижая процентное содержание в структуре металла. Окисление сопровождается выделением тепла. Благодаря присутствию шлаков СаО и FeO до разогрева происходит выведение фосфора в самом начале продувки.

Шлак с ним сливается и наводится новый. Производство стали сопровождается экспресс-анализами и контролем текущих изменений приборами контроля, вмонтированных в печь. Содержание фосфора в чугуне не должно превышать 0,075%.

Кислородно-конвекторный способ

Кислородно-конвертерный процесс является ведущим процессом сталеплавильного производства в мире. Мировое производство конвертерной стали в 2003 году составило 964,8 млн тонн или 63,3 % от общего производства. Производство конвертера является источником загрязнения окружающей природной среды. Основными проблемами этого являются снижение выбросов, сбросов и уменьшение отходов. Суть их заключается в использовании вторичных энергетических и материальных ресурсов.

Экзотермическое тепло генерируется реакциями окисления во время продувки.

Основной процесс выплавки стали с использованием собственных запасов:

  • Расплавленный чугун (иногда называемый горячим металлом) из доменной печи выливается в большой огнеупорный футерованный контейнер, называемый ковшом.
  • Металл в ковше направляется непосредственно для основного производства стали или стадии предварительной обработки.
  • Высокочистый кислород под давлением 700-1000 килопаскалей вводится со сверхзвуковой скоростью на поверхность ванны железа через охлаждаемую водой фурму, которая подвешена в сосуде и удерживается в нескольких футах над ванной.

Решение о предварительной обработке зависит от качества горячего металла и требуемого конечного качества стали. Самые первые конвертеры со съемным дном, которые могут быть отсоединены и отремонтированы, все еще используются. Были изменены копья, используемые для дутья. Для предотвращения заклинивания фурмы во время продувки применялись щелевые манжеты с длинным сужающимся медным наконечником. Кончики наконечника после сгорания сжигают CO, образующийся при выдувании в CO2, и обеспечивают дополнительное тепло. Для отвода шлака используются дротики, огнеупорные шарики и шлаковые детекторы.

Кислородно-конвертерный способ получения стали

Производство стали сегодня осуществляется в основном этим способом. На долю кислородно-конверторного производства совсем недавно приходилось до 60% мирового производства стали.

Однако, этот процент снижается в связи с появлением электродуговых печей (ЭДП). Продувка печей осуществляется чистым кислородом (99,5%) под высоким давлением.

Продукт кислородно-конвертерной печи представляет сталь с заданными химическими свойствами. Она поступает в машину непрерывного литья заготовок (МНЛЗ), где материал застывает в форме блюма или плиты. Для получения определенных жестких параметров металл подвергается вторичной переработке.

Кислородно-конвекторный способ: достоинства и недостатки

Не требует затрат на оборудование по очищению от газа, так как пылеобразование, т. е. испарение железа, снижено в 3 раза. За счет снижения выхода железа наблюдается рост выхода жидкой стали в 1,5 — 2,5 %. Преимуществом стало и то, что интенсивность продувки в таком способе увеличивается, что дает возможность повысить производительности конвертера на 18 %. Качество стали выше, потому что температура в зоне продувки снижена, что приводит к уменьшению образования азота.

Недостатки данного способа выплавки стали привели к снижению спроса на потребление, так как повышается уровень потребления кислорода на 7 % из-за большого расхода на сжигание топлива. Наблюдается повышенное содержание водорода в переработанном металле, из-за чего приходится некоторое время после окончания процесса вести продувку при помощи кислорода. Среди всех способов кислородно-конвертерный обладает самым повышенным шлакообразованием, причиной является невозможность следить за процессом окисления внутри оборудования.

Особенности второго этапа

Технология производства стали на втором этапе называется кипением стали. Основное назначение заключается в процентном снижении содержания углерода за счет окисления. FeO + C = CO + Fe.

Реакция окисления происходит более интенсивно при кипении и сопровождается поглощением тепла. Поэтому необходимо создавать постоянный приток тепла в ванну, а также для выравнивания температуры в расплаве.

При такой реакции окисления интенсивно выделяется газ оксида углерода CO, что вызывает бурное кипение в жидком агрегатном состоянии, по этой причине процесс называют кипением. Чтобы излишки углерода интенсивнее преобразовывались в окись, производство качественной стали предусматривает вдувание чистого кислорода и добавление в расплавленную структуру окалины. Поэтому таким важным является качество сырья для производства стали. Все исходные материалы проходят щепетильную проверку.

Немаловажным на этом этапе является вывод серы, благодаря чему повышается качество конечной стали. Используемая в компонентах сера, присутствует не в прямом виде, а в форме сульфида железа FeS.

При высоких температурах компонент также взаимодействует с оксидом СаО, образуя сульфид кальция CaS, который растворяется в шлаке, не соединяясь с железом. Это позволяет беспрепятственно выводить сульфид за пределы ванны.

Конвертерное производство стали

Мартеновский способ

Мартеновский способ на протяжении большей части 20-го века составлял основную часть обработки всей стали, изготовленной в мире. Уильям Сименс в 1860-х годах искал средства повышения температуры в металлургической печи, воскресив старое предложение об использовании отработанного тепла, выделяемого печью. Он нагревал кирпич до высокой температуры, затем использовал тот же путь для ввода воздуха в печь. Предварительно нагретый воздух значительно увеличивал температуру пламени.

Природный газ или распыленные тяжелые масла используются в качестве топлива; воздух и топливо нагреваются до сгорания. Печь загружается жидким доменным чугуном и стальным ломом вместе с железной рудой, известняком, доломитом и флюсами.

Сама печь изготовлена из высокоогнеупорных материалов, таких как магнезитовый кирпич для очагов. Вес мартеновских печей достигает 600 тонн, и их обычно устанавливают группами, так что массивное вспомогательное оборудование, необходимое для зарядки печей и обработки жидкой стали, может быть эффективно использовано.

Хотя мартеновский процесс практически полностью заменен в большинстве промышленно развитых стран основным кислородным процессом и электродуговой печью, им изготавливают около 1/6 всей стали, произведенной во всем мире.

Лекция по Материаловедению «Производство стали» (СПО)

  1. Производство стали

Стали

– железоуглеродистые сплавы, содержащие практически до 1,5% углерода, при большем его содержании значительно увеличиваются твёрдость и хрупкость сталей и они не находят широкого применения.

Основными исходными материалами для производства стали являются предельный чугун и стальной лом (скрап).

Содержание углерода и примесей в стали значительно ниже, чем в чугуне. Поэтому сущность любого металлургического передела чугуна в сталь – снижение содержания углерода и примесей путем их избирательного окисления и перевода в шлак и газы в процессе плавки.

Железо окисляется в первую очередь при взаимодействии чугуна с кислородом в сталеплавильных печах:

.

Одновременно с железом окисляются кремний, фосфор, марганец и углерод. Образующийся оксид железа при высоких температурах отдаёт свой кислород более активным примесям в чугуне, окисляя их.

Процессы выплавки стали осуществляют в три этапа.

Первый этап – расплавление шихты и нагрев ванны жидкого металла. Наиболее важная задача этапа – удаление фосфора.

Для удаления фосфора необходимы невысокие температура ванны металла и шлака, достаточное содержание в шлаке . Для повышения содержания в шлаке и ускорения окисления примесей в печь добавляют железную руду и окалину, наводя железистый шлак. Второй этап – кипение металлической ванны – начинается по мере прогрева до более высоких температур.

При повышении температуры более интенсивно протекает реакция окисления углерода, происходящая с поглощением теплоты:

.

Для окисления углерода в металл вводят незначительное количество руды, окалины или вдувают кислород.

Третий этап – раскисление стали заключается в восстановлении оксида железа, растворённого в жидком металле.

Сталь раскисляют двумя способами: осаждающим и диффузионным

.

Осаждающее раскисление осуществляется введением в жидкую сталь растворимых раскислителей (ферромарганца, ферросилиция, алюминия), содержащих элементы, которые обладают большим сродством к кислороду, чем железо.

Легирование стали осуществляется введением ферросплавов или чистых металлов в необходимом количестве в расплав. Легирующие элементы, у которых сродство к кислороду меньше, чем у железа (), при плавке и разливке не окисляются, поэтому их вводят в любое время плавки. Легирующие элементы, у которых сродство к кислороду больше, чем у железа (), вводят в металл после раскисления или одновременно с ним в конце плавки, а иногда в ковш.

  1. Производство стали в мартеновских печах

Мартеновский процесс (1864-1865, Франция). В период до семидесятых годов являлся основным способом производства стали. Способ характеризуется сравнительно небольшой производительностью, возможностью использования вторичного металла – стального скрапа. Вместимость печи составляет 200…900 т. Способ позволяет получать качественную сталь.

Мартеновская печь (рис.2.2.) по устройству и принципу работы является пламенной отражательной регенеративной печью. В плавильном пространстве сжигается газообразное топливо или мазут. Высокая температура для получения стали в расплавленном состоянии обеспечивается регенерацией тепла печных газов.

Современная мартеновская печь представляет собой вытянутую в горизонтальном направлении камеру, сложенную из огнеупорного кирпича. Рабочее плавильное пространство ограничено снизу подиной 12, сверху сводом 11,

а с боков передней 5 и задней 10 стенками. Подина имеет форму ванны с откосами по направлению к стенкам печи. В передней стенке имеются загрузочные окна 4 для подачи шихты и флюса, а в задней – отверстие 9 для выпуска готовой стали.

Рис. Схема мартеновской печи

Характеристикой рабочего пространства является площадь пода печи, которую подсчитывают на уровне порогов загрузочных окон. С обоих торцов плавильного пространства расположены головки печи 2, которые служат для смешивания топлива с воздухом и подачи этой смеси в плавильное пространство. В качестве топлива используют природный газ, мазут.

Для подогрева воздуха и газа при работе на низкокалорийном газе печь имеет два регенератора 1.

Регенератор – камера, в которой размещена насадка – огнеупорный кирпич, выложенный в клетку, предназначен для нагрева воздуха и газов.

Отходящие от печи газы имеют температуру 1500…1600 0C. Попадая в регенератор, газы нагревают насадку до температуры 1250 0C. Через один из регенераторов подают воздух, который проходя через насадку нагревается до 1200 0C и поступает в головку печи, где смешивается с топливом, на выходе из головки образуется факел 7, направленный на шихту 6.

Отходящие газы проходят через противоположную головку (левую), очистные устройства (шлаковики), служащие для отделения от газа частиц шлака и пыли и направляются во второй регенератор.

Охлажденные газы покидают печь через дымовую трубу 8.

После охлаждения насадки правого регенератора переключают клапаны, и поток газов в печи изменяет направление.

Температура факела пламени достигает 1800 0C. Факел нагревает рабочее пространство печи и шихту. Факел способствует окислению примесей шихты при плавке.

Продолжительность плавки составляет 3…6 часов, для крупных печей – до 12 часов. Готовую плавку выпускают через отверстие, расположенное в задней стенке на нижнем уровне пода. Отверстие плотно забивают малоспекающимися огнеупорными материалами, которые при выпуске плавки выбивают. Печи работают непрерывно, до остановки на капитальный ремонт – 400…600 плавок.

Основными технико-экономическими показателями производства стали в мартеновских печах являются:

  • производительность печи – съ¨м стали с 1м2 площади пода в сутки (т/м2 в сутки), в среднем составляет 10 т/м2; р
  • расход топлива на 1т выплавляемой стали, в среднем составляет 80 кг/т.

С укрупнением печей увеличивается их экономическая эффективность.

3. Производство стали в кислородных конвертерах

Кислородно-конвертерный процесс – выплавка стали из жидкого чугуна в конвертере с основной футеровкой и продувкой кислородом через водоохлаждаемую фурму.

Первые опыты в 1933-1934 – Мозговой.

В промышленных масштабах – в 1952-1953 на заводах в Линце и Донавице (Австрия) – получил название ЛД-процесс. В настоящее время способ является основным в массовом производстве стали.

Кислородный конвертер – сосуд грушевидной формы из стального листа, футерованный основным кирпичом.

Вместимость конвертера – 130…350 т жидкого чугуна. В процессе работы конвертер может поворачиваться на 360 0 для загрузки скрапа, заливки чугуна, слива стали и шлака.

Шихтовыми материалами кислородно-конвертерного процесса являются жидкий предельный чугун, стальной лом (не более 30%), известь для наведения шлака, железная руда, а также боксит и плавиковый шпат для разжижения шлака.

Последовательность технологических операций при выплавке стали в кислородных конвертерах представлена на рис. 2.3.

Рис. Последовательность технологических операций при выплавке стали в кислородных конвертерах

После очередной плавки стали выпускное отверстие заделывают огнеупорной массой и осматривают футеровку, ремонтируют.

Перед плавкой конвертер наклоняют, с помощью завалочных машин загружают скрап рис. (2.3.а), заливают чугун при температуре 1250…1400 0C (рис. 2.3.б).

После этого конвертер поворачивают в рабочее положение (рис. 2.3.в), внутрь вводят охлаждаемую фурму и через не¨ подают кислород под давлением 0,9…1,4 МПа. Одновременно с началом продувки загружают известь, боксит, железную руду. Кислород проникает в металл, вызывает его циркуляцию в конвертере и перемешивание со шлаком. Под фурмой развивается температура 2400 0C. В зоне контакта кислородной струи с металлом окисляется железо. Оксид железа растворяется в шлаке и металле, обогащая металл кислородом.

Фосфор удаляется в начале продувки ванны кислородом, когда ее температура невысока (содержание фосфора в чугуне не должно превышать 0,15 %). При повышенном содержании фосфора для его удаления необходимо сливать шлак и наводить новый, что снижает производительность конвертера.

Сера удаляется в течение всей плавки (содержание серы в чугуне должно быть до 0,07 %).

В кислородных конвертерах выплавляют стали с различным содержанием углерода, кипящие и спокойные, а также низколегированные стали. Легирующие элементы в расплавленном виде вводят в ковш перед выпуском в него стали.

Плавка в конвертерах вместимостью 130…300 т заканчивается через 25…30 минут.

  1. Производство стали в электропечах

Плавильные электропечи имеют преимущества по сравнению с другими плавильными агрегатами:

а) легко регулировать тепловой процесс, изменяя параметры тока;

б) можно получать высокую температуру металла,

в) возможность создавать окислительную, восстановительную, нейтральную атмосферу и вакуум, что позволяет раскислять металл с образованием минимального количества неметаллических включений.

Электропечи используют для выплавки конструкционных, высоколегированных, инструментальных, специальных сплавов и сталей.

Различают дуговые и индукционные электропечи.

5. Дуговая плавильная печь

Схема дуговой печи показана на рис.

Рис. Схема дуговой плавильной печи

Дуговая печь питается трёхфазным переменным током. Имеет три цилиндрических электрода 9

из графитизированной массы, закреплённых в электрододержателях
8
, к которым подводится электрический ток по кабелям
7
. Между электродом и металлической шихтой
3
возникает электрическая дуга. Корпус печи имеет форму цилиндра. Снаружи он заключён в прочный стальной кожух
4
, внутри футерован основным или кислым кирпичом
1
. Плавильное пространство ограничено стенками
5
, подиной
12
и сводом
6.
Съёмный свод
6
имеет отверстия для электродов. В стенке корпуса рабочее окно
10
(для слива шлака, загрузки ферросплавов, взятия проб), закрытое при плавке заслонкой. Готовую сталь выпускают через сливное отверстие со сливным желобом
2
. Печь опирается на секторы и имеет привод
11
для наклона в сторону рабочего окна или желоба. Печь загружают при снятом своде.

Вместимость печей составляет 0,5…400 тонн. В металлургических цехах используют электропечи с основной футеровкой, а в литейных – с кислой.

6. Индукционные тигельные плавильные печи

Выплавляют наиболее качественные коррозионно-стойкие, жаропрочные и другие стали и сплавы.

Вместимость от десятков килограммов до 30 тонн.

Схема индукционной тигельной печи представлена на рис 3.2.

Рис. Схема индукционной тигельной печи

Печь состоит из водоохлаждаемого индуктора 3

, внутри которого находится тигель
4
(основные или кислые огнеупорные материалы) с металлической шихтой, через индуктор от генератора высокой частоты проходит однофазный переменный ток повышенной частоты (500…2000 Гц).

При пропускании тока через индуктор в металле 1

, находящемся в тигле, индуцируются мощные вихревые токи, что обеспечивает нагрев и плавление металла. Для уменьшения потерь тепла, печь имеет съемный свод
2
.

Тигель изготавливают из кислых (кварцит) или основных (магнезитовый порошок) огнеупоров. Для выпуска плавки печь наклоняют в сторону сливного желоба.

Под действием электромагнитного поля индуктора при плавке происходит интенсивная циркуляция жидкого металла, что способствует ускорению химических реакций, получению однородного по химическому составу металла, быстрому всплыванию неметаллических включений, выравниванию температуры.

В индукционных печах выплавляют сталь и сплавы из легированных отходов методом
переплава
, или из чистого шихтового железа и скрапа с добавкой ферросплавов
методом сплавления
.

7. Разливка стали

Из плавильных печей сталь выпускают в ковш, который мостовым краном переносят к месту разливки стали. Из ковша сталь разливают в изложницы или кристаллизаторы машины для непрерывного литья заготовок. В изложницах или кристаллизаторах сталь затвердевает и получают слитки, которые подвергаются прокатке, ковке.

Изложницы

– чугунные формы для изготовления слитков.

Изложницы выполняют с квадратным, прямоугольным, круглым и многогранным поперечными сечениями.

Слитки с квадратным сечением переделывают на сортовой прокат: двутавровые балки, швеллеры, уголки. Слитки прямоугольного сечения – на листы. Слитки круглого сечения используются для изготовления труб, колёс. Слитки с многогранным сечением применяют для изготовления поковок.

Спокойные и кипящие углеродистые стали разливают в слитки массой до 25 тонн, легированные и высококачественные стали – в слитки массой 0,5…7 тонн, а некоторые сорта высоколегированных сталей – в слитки до нескольких килограммов.

Сталь разливают в изложницы сверху (рис. 3.3.а), снизу (сифоном) (рис.3.3.б) и на машинах непрерывного литья (рис.3.4).

Рис. Разливка стали в изложницы

а – сверху; б – снизу (сифоном)

В изложницы сверху сталь разливают непосредственно из ковша 1

. При этом исключается расход металла на литники, упрощается подготовка оборудования к разливке. К недостаткам следует отнести менее качественную поверхность слитков, из-за наличия пленок оксидов от брызг металла, затвердевающих на стенках изложницы.

Достоинства и недостатки данного способа

К преимуществам относят простоту использования и легкость в получении легированной стали с примесью различных добавок, которые придают материалу различные специализированные свойства. Необходимые добавки и сплавы добавляют непосредственно перед окончанием выплавки.

К недостаткам можно отнести сниженную экономичность, по сравнению с кислородно-конверторным способом. Также качество стали более низкое, по сравнению с остальными методами выплавки металла.

Производство цветных металлов

Производство меди.

Медь получают главным образом пирометаллургическим способом. Пирометаллургия – это совокупность металлургических процессов, протекающих при высоких температурах. Производство меди из медных руд включает в себя их обогащение, обжиг, плавку на полупродукт – штейн, выплавку из штейна черновой меди (конвертирование) и её очистку от примесей (рафинирование).

Для производства меди применяют медные руды, содержащие 1 – 6% Сu, а также отходы меди и её сплавы.

Черновая медь содержит 98,4 – 99,4% Сu и небольшое количество примесей. Эту медь разливают в изложницы. Черновую медь рафинируют для удаления вредных примесей и газов.

После огневого рафинирования получают медь чистотой 99 – 99,5% (рис. 21.). Из неё отливают чушки для выплавки сплавов меди (бронзы и латуни) или плиты для электролитического рафинирования. Электролитическое рафинирования ведут для получения чистой меди от примесей (более 99,5%Cu).

Рис. 21. Производство рафинированной меди

Производство алюминия.

Основным способом производства алюминия в настоящее время является электролитический. Электролиз – это совокупность процессов электрохимического окисления – восстановления, происходящих на погруженных в электролит электродов при прохождении электрического тока.

Основное сырьё для производства алюминия – алюминиевые руды: бокситы, нефелины, алуниты, каолины.

Производство алюминия включает в себя:

  • получение безводного, свободного от примесей оксида алюминия (Al2O3 глинозёма). Глинозём получают из бокситов путём их обработки щёлочью;
  • получение криолита из плавикового шпата 2H3AlF6;
  • электролиз глинозёма в расплавленном криолите;

В процессе электролиза алюминий собирается на дне ванны под слоем электролита. Его периодически извлекают, используя специальное устройство. Для нормальной работы ванны на её дне оставляют немного алюминия рис. 22.

Алюминий, полученный электролизом, называют алюминием-сырцом. В нём содержатся металлические и неметаллические примеси, газы. Примеси удаляют рафинированием, для чего продувают хлор через расплав алюминия. Затем жидкий алюминий выдерживают в ковше или в электропечи в течение 30 – 45 мин при температуре 690 – 730оС для всплывания неметаллических включений и выделения газов из металла. После рафинирования чистота первичного алюминия составляет 99,5 – 99,85%. На рис. 23. фотография Уральского алюминиевого завода.

Рис. 22. Производство алюминия

Рис. 23. Уральский алюминиевый завод

Производство магния.

Для производства магния наибольшее распространение получил электролитический способ (рис. 24).

Рис. 24. Схема производства магния

Основным сырьём для получения магния является карналлит, магнезит, доломит, бишофит.

Производство магния включает в себя:

  • получение чистых безводных солей магния (хлористого магния MgCl2);
  • электролиз этих солей в расплавленном состоянии, получение чернового магния в котором содержится 5% примесей;
  • рафинирование чернового магния, т.е. переплавляют его с флюсами при температуре 700…750оС и перемешивают. Неметаллические примеси переходят в шлак. Затем печь охлаждают до температуры 670оС, и магний разливают в изложницы на чушки.

Производство титана.

Титан получают магниетермическим способом. Производство титана включает в себя:

  • обогащение титановых руд;
  • выплавку из них титанового шлака с последующим получением из него четырёххлористого титана;
  • восстановление из последнего металлического титана магнием.

Сырьём для получения титана являются титаномагнетитовые руды, из которых выделяют ильменитовый концентрат (TiO2, FeO, Fe2O3 и пустая порода). Название этот концентрат получил по наличию в нём минерала ильменита FeO… TiO2.

Ильменитовый концентрат плавят в смеси с древесным углём, антрацитом, где оксиды железа и титана восстанавливаются. Полученный титановый шлак подвергают хлорированию в специальных печах. Далее полученный четырёххлористый титан смешивают с чушковым магнием в реакторах (рис. 25) при температуре 950 – 1000оС и происходит его восстановление. Получается пористая масса – губка.

Титановую губку плавят методом ВДП. Вакуум в печи предохраняет титан от окисления и способствует очистке его от примесей. Полученные слитки титана имеют дефекты, поэтому их вторично переплавляют, используя как расходуемые электроды. В результате этого чистота титана составляет 99,6 – 99,7%. После вторичного переплава слитки (рис. 26) используют для обработки давлением. На рис. 27 показано изделие полученное из титана.

Рис. 25. Реакторы для восстановления четырёххлористого титана

Рис. 26. Титановые слитки

Рис. 27 Изделие из титана
408

Электросталеплавильный способ

Современный способ выплавки стали с использованием собственных запасов представляет собой печь, которая нагревает заряженный материал с помощью электрической дуги. Промышленные дуговые печи имеют размеры от небольших единиц грузоподъемностью около одной тонны (используются в литейных цехах для производства чугунных изделий) до 400 тонн единиц, применяемых для вторичной металлургии.

Дуговые печи, используемые в исследовательских лабораториях, могут иметь емкость всего несколько десятков граммов. Промышленные температуры электрической дуговой печи могут составлять до 1800 °C (3,272 °F), в то время как лабораторные установки могут превышать 3000 °C (5432 °F).

Дуговые печи отличаются от индукционных тем, что зарядный материал непосредственно подвергается воздействию электрической дуги, а ток в выводах проходит через заряженный материал. Электрическая дуговая печь используется для производства стали, состоит из огнеупорной футеровки, обычно водоохлаждаемой, больших размеров, покрыта раздвижной крышей.

Печь в основном разделена на три секции:

  • Оболочка, состоящая из боковых стенок и нижней стальной чаши.
  • Очаг состоит из огнеупора, который вытягивает нижнюю чашу.
  • Крыша с огнеупорной футеровкой или водяным охлаждением может быть выполнена в виде секции шара или в виде усеченного конуса (коническая секция).

Способы производства стали

Существует несколько методов производства стали, каждый обладает своими определенными достоинствами и недостатками. От выбранного способа зависит то, с какими свойствами можно получить материал. Основные способы производства стали:

  1. Мартеновский метод. Данная технология предусматривает применение специальных печей, которые способны нагревать сырье до температуры около 2000 градусов Цельсия. Рассматривая способы производства легированных сталей, отметим, что этот метод также позволяет проводить добавление различных примесей, за счет чего получаются необычные по составу стали. Мартеновский метод основан на применении специальных печей.
  2. Электросталеплавильный метод. Для того чтобы получить материал высокого качества проводится производство стали в электропечах. За счет применения электрической энергии для нагрева сырья можно точно контролировать прохождение процесса окисления и выделения шлаков. В данном случае важно обеспечить появление шлаков. Они являются передатчиком кислорода и тепла. Данная технология позволяет снизить концентрацию вредных веществ, к примеру, фосфора и серы. Электрическая плавка может проходить в самой различной среде: избыточного давления, вакуума, при определенной атмосфере. Проводимые исследования указывают на то, что электросталь обладает самым высоким качеством. Применяется технология для производства качественных высоколегированных, коррозионностойких, жаропрочных и других видов стали. Для преобразования электрической энергии в тепловую применяется дуговая печь цилиндрической формы с днищем сферического типа. Для обеспечения наиболее благоприятных условий плавки внутреннее пространство отделывается при использовании жаропрочного металла. Работа устройства возможна только при подключении к трехфазной сети. Стоит учитывать, что сеть электрического снабжения должна выдерживать существенную нагрузку. Источником тепловой энергии становится электрическая дуга, возникающая между электродом и расплавленным металлом. Температура может быть более 2000 градусов Цельсия.
  3. Кислородно-конвертерный. Непрерывная разливка стали в данном случае сопровождается с активным вдуванием кислорода, за счет чего существенно ускоряется процесс окисления. Применяется этот метод изготовления и для получения чугуна. Считается, что данная технология обладает наибольшей универсальностью, позволяет получать металлы с различными свойствами.

Способы производства оцинкованной стали не сильно отличаются от рассматриваемых. Это связано с тем, что изменение качеств поверхностного слоя проходит путем химико-термической обработки.

Существуют и другие технологии производства стали, которые обладают высокой эффективностью. Например, методы, основанные на применении вакуумных индукционных печей, а также плазменно-дуговой сварки.

Достоинства и недостатки способа

Данный способ занимает лидирующие позиции в области производства стали. Метод выплавки стали применяется для создания высококачественного металла, который либо совсем лишен, либо содержит незначительное количество нежелательных примесей, таких как сера, фосфор и кислород.

Главным плюсом метода является использование электроэнергии для нагревания, благодаря чему можно легко контролировать температуру плавления и достичь невероятной скорости нагревания металла. Автоматизированная работа станет приятным дополнением к прекрасной возможности качественной переработки различного металлического лома.

К недостаткам можно отнести большое энергопотребление.

История производства стали

Всем известно, что почти три четверти периодической системы химических элементов Д.И. Менделеева, составляют металлы. Место металлов в современном мире – одно из центральных, а значение их для современного человека трудно переоценить. Казалось бы, человек знает о металлах все, для него в этой области не осталось никаких тайн, но позвольте нам, сотрудникам , давно и успешно занимающейся металлопрокатом, в этом усомниться и познакомить вас с некоторыми тайнами из истории использования человеком металлов. Давайте заглянем в загадочные глубины истории человечества, ведь именно там еще молодое племя людей познакомилось с металлами, открыло некоторые волшебные их свойства, узнало, как можно заставить его приносить пользу. Однако когда именно это случилось и как именно – это самый большой секрет и самая главная тайна металлов, которые тщетно пытается разгадать.

По преданиям, первое железо досталось людям с неба. Оно содержалось в метеоритах. Это подтверждается словами, обозначающими в разных языках железо – в древнеегипетском железо именуется «вааепере», в переводе «родившееся на небе», а в древнекоптском его называют «камнем неба». Однако смущает редкость железных метеоритов в природе, что значительно снижает вероятность их находок древним человеком. Ученые склоняются к земному происхождению железа, которое подтверждает, крайне редкое, нахождение в природе самородков.

Древнейшие изделия из металлов были найдены на месте поселений, существовавших около восьми тысяч лет назад! Сначала человек просто нашел некоторые металлы, которые встречаются в природе в естественном, или самородном состоянии, — золото, серебро, медь. Они загадочно блестели, радовали глаз, и потому их использовали для изготовления украшений. Однако вскоре самородную медь человек применять и как материал для различных орудий: рыболовных крючков, наконечников стрел и копий.

А как же человек начал добывать металл из камня? Как впервые возникла добыча руды? О, это случилось не сразу, и не без помощи божественных сил, которые в данном случае представлял огонь. Древние божества защищали людей, но и сами нуждались в защите. Чтобы огонь не погас, его обставляли камнями, а среди этих камней попадались и куски медной руды. Под воздействием магических сил огня руда расплавлялась и превращалась в медь. Долго не замечал этих волшебных превращений древний человек, но наконец заметил и стал специально загружать медную руду в костер, чтобы получить металл. Медь, выплавленная из руды, оказалась более крепкой, чем самородная, правда, все еще уступала по крепости камню – слишком она была мягкая. Гораздо прочнее оказался сплав меди с оловом – бронза. Орудия из бронзы постепенно вытеснили аналогичные медные.

Долгое время железо ценилось наравне с золотом, потому что его было так же мало. Но в конце концов человек открыл относительно дешевое производство железа – выплавку его из руды в металлургических печах. На земле наступил железный век, который продолжается до сих пор.

А теперь обратимся к другой тайне: когда человек узнал, почему получаются металлы. Да, человек сначала узнал, как получаются металлы, но еще долго после этого не мог понять, почему. Человек не мог понять всех трансформаций железа: иногда оно получалось твердым, но хрупким, а иногда, напротив, слишком мягким, но орудия из него гнутся, сплющиваются и быстро тупятся. Таким образом, история добычи руды – это история различных опытов, которые проводились с металлами и продолжались до последней четверти XIX века. Именно тогда русский ученый П.П. Аносов научно обосновал производство стали. Ему на это потребовалось 10 лет.

В нашем XXI веке сталь получают на специально оборудованных металлургических заводах. Где сначала железную руду расплавляют в огромных доменных печах, в которых она превращается в чугун. Чугун, в свою очередь, расплавляют, но уже в мартенах, конвекторах или электропечах, и тогда он превращается в сталь. Над этим волшебным превращением «колдуют» специалисты различного профиля: агломератчики, инженеры-металлурги, конверторщики, обжиговщики, плавильщики, разливщики, стропальщики, которые легко управляют различными металлургическими агрегатами.

А как получали сталь тогда, когда не было всего этого арсенала умных машин? На Востоке, как, впрочем, и в Египте, и на Британских островах, и в Древней Элладе, и в Древней Руси , выплавляли сталь из тщательно подготовленной железной руды в небольших сосудах из глины (тиглях). Железную руду предварительно дробили на мелкие кусочки, потом обжигали эти кусочки на костре. В процессе выгорали сера, фосфор и другие вещества, которые, встречаясь в руде, ухудшают свойства металла. Древние мастера об существовании всех этих веществ и их воздействии на металл, конечно, не догадывались, просто, на основании опыта они знали, что из измельченной и обожженной руды получается сталь лучше.

После завершения обжига руду засыпали в тигель, причем, засыпали послойно с порошком из древесного угля; слоев, как правило, делали 10-12 (слой угля — слой руды – слой угля). Уголь в том случае играл роль теплового носителя, так как он горел и расплавлял руду. Для того чтобы горение было более интенсивным, в основании тигля существовало отверстие, куда нагнетали воздух посредством больших кожаных мехов. Таким образом в тигле создавалась высочайшая температура, под воздействием которой расплавлялась руда, а углерод, который и составляет уголь, изымал из руды кислород, и она превращалась в железо. Металл-СК и этим занимается.

В дальнейшем глиняные тигли сменились небольшими печами-домницами, которые давали уже больше металла. Однако на Востоке хранили очень долго верность именно тому способу создания стали, который нуждался в использовании тигля. Может быть, потому для восточного мастера получение железа – еще не конечный результат. Конечным результатом была булатная сталь, известная и почитаемая во всем мире, ибо никакая другая не могла сравниться с ней в твердости и вместе с тем гибкости. Секрет изготовления булатной стали передавался от отца к сыну и доподлинно не сохранился. Но известно, что после получения железа мастер доставал из укромных уголков чудодейственные растения (древние мастера были уверены, что соки растений, обладая прочностью, гибкостью, вязкостью, передают эти свойства металлу) и бросал из в отверстие тигля, но главное – в той пропорции, которая была известна только ему. И вот, растения сгорали, действительно передавая свою волшебные свойства железу, превращая его в сталь. Наверняка удалось установить, что вместе с корешками и листьями мастера добавляли в металл графитовый порошок, конечно, только в определенных пропорциях. И не знали мудрые мастера, что именно графит, который они считали материалом скорее вспомогательным, превращал железо в сталь. Дело в том, что графит – это чистый углерод, играющий одну из основных ролей в производстве металла. Первое важнейшее правило металлургии – только тот сплав считается сталью, в котором количество углеродов не превышает двух процентов. Второе важнейшее правило — чем больше углерода, тем сталь более крепка, но менее пластична, и наоборот.

Вот так, вплоть до середины прошлого столетия, путем подбора точного количества углерода и решалась сложнейшая задача совмещения в металле двух противоположностей – крепости и пластичности. Итак, решающая польза графита доказана. А как же быть с цветочками, корешочками? Их-то польза в чем? В том, что они содержат огромное количество разных неорганических веществ: железо, молибден, ванадий. Вот эти вещества по-разному и влияли на сталь, придавая ей особые уникальные свойства. Говоря о древнем производстве стали, нельзя не коснуться такого важного момента, как ее закалка. Это самый таинственный, самый волнующий момент изготовления особого рода стали. Закалка была изобретена в Древнем Египте, где мастера, желая быстро охладить откованное изделие, погружали его в очень холодную воду, и в результате отметили, что после этой процедуры металл становится много крепче.

Ошибочно полагали древние люди, что закалка напрямую зависит от качеств жидкости, в которые погружали раскаленный металл. Но эта ошибочность породила множество фантастических, изощереннейших экспериментов. Так, в Багдаде охлаждали металл, вонзая его в мускулистое тело раба, который должен был передать свою силу оружию. В Средневековье был известен рецепт закалки стали, главным ингредиентом в котором была моча рыжего мальчика. Скажите, темные суеверия? И будете правы. Просто, клинки действительно лучше закаляются в крови или моче, чем в простой колодезной воде, ибо этот процесс в идеале должен проходить медленно, что и получается в растворах солей. Или если клинок охлаждается на ветру, как закаляли сталь в древнем Дамаске.

А как же тогда быть с современными методами? В чем их привлекательность? В приватности научного знания над мифопоэтическим, который отличает современную металлургию от древней, но отнюдь не исключает ее красоты. Это подтверждает и слаженная четкая работа , где каждая деталь, изготовленная из металла, рассчитана до мелочей и прекрасна в своей безупречности. Да, в современном мире многое решают математические формулы, числовые зависимости, точные вычисления. Так, еще на бумаге, можно заранее предугадать свойства, которые будет иметь сталь в результате, предварительно рассчитав всю технологию ее изготовления. Оттого-то современная металлопромышленность поражает огромным ассортиментом сталей: сверхпрочные, износостойкие, жаропрочные, кислотоупорные. Такой подход получил название композиционного, а ученые-металлурги – композиторов. А ведь и правда, если знаменитый афоризм называет архитектуру «музыкой, застывшей в камне», то многие металлические изделия иначе, как музыкой, застывшей в металле, и не назовешь.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]