Расчет прогиба балки методом начальных параметров: учимся составлять формулы


В этой статье будем рассматривать универсальный метод расчёта прогибов балки — метод начальных параметров. Как и любая другая статья для чайников, этот материал будет изложен максимально просто, лаконично и без лишних заумных терминов.

В качестве примера возьмём металлическую балку на двух опорах. Запишем для нее формулу для вычисления прогиба, посчитаем его численное значение. А также в конце этой статьи дам ссылки на другие полезные статьи с примерами определения прогибов для различных расчетных схем.

Что такое прогиб балки?

Под действием внешней нагрузки поперечные сечения балки перемещаются вертикально (вверх или вниз), эти перемещения называются прогибами. Кроме того, сечения поворачиваются на определенный угол. Эти две величины, для любого сечения, можно определить с помощью метода начальных параметров.

ν-прогиб сечения C; θ-угол поворота сечения C.

Расчет прогибов необходим для выполнения расчета на жесткость. Балка может считаться жесткой, только если расчётные значения прогибов не превышают допустимых значений. Если же условие жесткости не выполняется, то принимаются меры по ее повышению. Например, задаются другим материалом, у которого модуль упругости БОЛЬШЕ. Либо же меняют геометрические параметры балки, чаще всего, поперечное сечение. Например, если балка двутаврового профиля №12, не подходит по жесткости, принимают двутавр №14 и делают перерасчет. Если потребуется, повторяют подбор, до того момента пока не найдут тот самый – двутавр.

Обзор [ править ]

Типовое сечение двутавров.

Есть две стандартные формы двутавровой балки:

  • Прокат двутавровый, полученный горячей прокаткой , холодной прокаткой или экструзией (в зависимости от материала).
  • Пластинчатая балка , образованная сваркой (или иногда скреплением болтами или заклепками ) пластин.

Двутавровые балки обычно изготавливаются из конструкционной стали, но также могут изготавливаться из алюминия или других материалов. Распространенным типом двутавровой балки является рулонная стальная балка

(RSJ), иногда неправильно отображаемая как
усиленная стальная балка
. Британские и европейские стандартытакже укажите универсальные балки (UB) и универсальные колонны (UC). Эти секции имеют параллельные фланцы, в отличие от фланцев RSJ различной толщины, которые сейчас редко прокатываются в Великобритании. Параллельные фланцы легче подсоединять, и они избавляют от необходимости использовать конические шайбы. UC имеют равную или почти равную ширину и глубину и больше подходят для вертикальной ориентации для несения осевой нагрузки, например, колонны в многоэтажной конструкции, в то время как UB значительно глубже, чем их ширина, и больше подходят для несения изгибающей нагрузки, такой как балка элементы в полах.

Двутавровые балки — двутавровые балки, изготовленные из дерева с ДВП и / или клееного бруса, — также становятся все более популярными в строительстве, особенно в жилых домах, поскольку они легче и менее подвержены деформации, чем массивные деревянные балки . Однако были некоторые опасения по поводу их быстрой потери силы в огне, если они не были защищены.

Метод начальных параметров

Метод начальных параметров, является довольно универсальным и простым методом. Используя этот метод, можно записывать формулу для вычисления прогиба и угла поворота любого сечения балки постоянной жесткости (с одинаковым поперечным сечением по длине).

Под начальными параметрами понимаются уже известные перемещения:

  • в опорах прогибы равны нулю;
  • в жесткой заделке прогиб и угол поворота сечения равен нулю.

Учитывая эти свойства, их называют еще граничными условиями, определяются перемещения в других частях балки.

Гипотезы и определения при изгибе

Прежде всего начнем с определений и гипотез, которые мы вводим в сопротивлении материалов при изучении изгиба:

Что такое балка? Балка — это стержень, длина которого значительно больше чем ширина и высота. При этом он испытывает деформацию изгиба.


балка — называют элемент конструкции, когда длина значительно больше ширины и высоты

Изгиб, что это? Это такой вид деформации, при котором происходит искривление продольной оси балки, но продольные волокна друг на друга не давят, а сечения плоские до изгиба остаются такими и после изгиба.


правило знаков при изгибе

На рисунке выше изображена схема для вывода формулы напряжений и демонстрация напряжений, которые возникают при чистом изгибе. Этот термин придется изложить в другой статье. А пока продолжим.

Эпюра — это график изменения величины, для которой он построен. Так эпюра изгибающего момента — это график изменения внутреннего усилия — изгибающего момента по длине балки. Используя этот график, построенный в масштабе, можно с помощь простых операций определить значение изгибающего момента в любой точке по длине балки. Эпюра поперечной силы — аналогично, график ее изменения внутреннего усилия поперечная сила по длине балки.

Расчет прогибов балки

Посмотрим, как пользоваться методом начальных параметров на примере простой балки, которая загружена всевозможными типами нагрузок, чтобы максимально охватить все тонкости этого метода:

Реакции опор

Для расчета нужно знать все внешние нагрузки, действующие на балку, в том числе и реакции, возникающие в опорах.

Если ты не знаешь, как определять реакции, то рекомендую изучить данный материал, где я как раз рассказываю, как они определяются на примере этой же балки:

Система координат

Далее вводим систему координат, с началом в левой части балки (точка А):

Распределенная нагрузка

Метод начальных параметров, который будем использовать чуть позднее, работает только в том случае, когда распределенная нагрузка доходит до крайнего правого сечения, наиболее удаленного от начала системы координат. Конкретно, в нашем случае, нагрузка обрывается и такая расчетная схема неприемлема для дальнейшего расчета.

Если бы нагрузка была приложена вот таким способом:

То можно было бы сразу приступать к расчету перемещений. Нам же потребуется использовать один хитрый прием – ввести дополнительные нагрузки, одна из которых будет продолжать действующую нагрузку q, другая будет компенсировать это искусственное продолжение. Таким образом, получим эквивалентную расчетную схему, которую уже можно использовать в расчете методом начальных параметров:

Вот, собственно, и все подготовительные этапы, которые нужно сделать перед расчетом.

Приступим непосредственно к самому расчету прогиба балки. Рассмотрим сечение в середине пролета – сечение C:

Относительно системы координат записываем граничные условия. Учитывая способ закрепления балки, фиксируем, что прогибы в точках А и В равны нулю, причем важны расстояния от начала координат до опор:

\[ { V }_{ A }=0\quad при\quad x=0 \]

\[ { V }_{ B }=0\quad при\quad x=8м \]

Записываем уравнение метода начальных параметров для сечения C:

\[ E{ I }_{ z }{ V }_{ C }=… \]

Произведение жесткости балки EI и прогиба сечения C будет складываться из произведения EI и прогиба сечения в начале системы координат, то есть сечения A:

\[ E{ I }_{ z }{ V }_{ C }=E{ I }_{ z }{ V }_{ A }+ … \]

Напомню, E – это модуль упругости первого рода, зависящий от материала, из которого изготовлена балка, I – это момент инерции, который зависит от формы и размеров поперечного сечения балки. Также учитывается угол поворота поперечного сечения в начале системы координат, причем угол поворота дополнительно умножается на расстояние от рассматриваемого сечения до начала координат:

\[ E{ I }_{ z }{ V }_{C }=E{ I }_{ z }{ V }_{ A }+E{ I }_{ z }{ \theta }_{ A }\cdot 4+… \]

Учет внешней нагрузки

И, наконец, нужно учесть внешнюю нагрузку, но только ту, которая находится левее рассматриваемого сечения C. Здесь есть несколько особенностей:

  • Сосредоточенные силы и распределенные нагрузки, которые направлены вверх, то есть совпадают с направлением оси y, в уравнении записываются со знаком «плюс». Если они направлены вниз, соответственно, со знаком «минус»:
  • Моменты, направленные по часовой стрелке – положительные, против часовой стрелки – отрицательные:
  • Все сосредоточенные моменты нужно умножать дробь:

\[ M\cdot \frac { { x }^{ 2 } }{ 2 } \]

  • Все сосредоточенные силы нужно умножать дробь:

\[ F\cdot \frac { { x }^{ 3 } }{ 6 } \]

  • Начало и конец распределенных нагрузок нужно умножать на дробь:

\[ q\cdot \frac { { x }^{ 4 } }{ 24 } \]

Откуда такие цифры и степени взялись? Все эти вещи вытекают при интегрировании дифференциального уравнения упругой линии балки, в методе начальных параметров все эти выводы опускаются, то есть он является как бы упрощенным и универсальным методом.

Формулы прогибов

С учетом всех вышеописанных правил запишем окончательное уравнение для сечения C:

\[ E{ I }_{ z }{ V }_{ C }=E{ I }_{ z }{ V }_{ A }+E{ I }_{ z }{ \theta }_{ A }\cdot 4+\frac { { R }_{ A }\cdot { 4 }^{ 3 } }{ 6 } -\frac { F\cdot { 4 }^{ 3 } }{ 6 } -\frac { q\cdot { 2 }^{ 4 } }{ 24 } \]

В этом уравнении содержится 2 неизвестные величины – искомый прогиб сечения C и угол поворота сечения A.

Поэтому, чтобы найти прогиб, составим второе уравнение для сечения B, из которого можно определить угол поворота сечения A. Заодно закрепим пройденный материал:

\[ E{ I }_{ z }{ V }_{ B }=E{ I }_{ z }{ V }_{ A }+E{ I }_{ z }{ \theta }_{ A }\cdot 8+\frac { { R }_{ A }\cdot { 8 }^{ 3 } }{ 6 } -\frac { F\cdot { 8 }^{ 3 } }{ 6 } -\frac { q\cdot 6^{ 4 } }{ 24 } +\frac { q\cdot 2^{ 4 } }{ 24 } =0 \]

Упрощаем уравнение:

\[ E{ I }_{ z }{ \theta }_{ A }\cdot 8+874.67=0 \]

Выражаем угол поворота:

\[ { \theta }_{ A }=-\frac { 874.67 }{ 8E{ I }_{ z } } =-\frac { 109.33кН{ м }^{ 2 } }{ E{ I }_{ z } } \]

Подставляем это значение в наше первое уравнение и находим искомое перемещение:

\[ E{ I }_{ z }{ V }_{ C }=\frac { -109.33\cdot 4E{ I }_{ z } }{ E{ I }_{ z } } +\frac { { R }_{ A }\cdot { 4 }^{ 3 } }{ 6 } -\frac { F\cdot { 4 }^{ 3 } }{ 6 } -\frac { q\cdot { 2 }^{ 4 } }{ 24 } =-\frac { 280кН{ м }^{ 3 } }{ E{ I }_{ z } } \]

Построение эпюр изгибающего момента и поперечной силы при изгибе

Полученные значения изгибающего момента и поперечной силы в двух сечениях (при положении x=0 и x=l) откладываем соответствующие ординаты, т.е. буквально строим графики обеих функций.

построение эпюр при изгибе внутренних усилий момента M(x) и Q(x)

Что мы видим из построенных эпюр, какие выводы мы можем сделать:

  • из эпюры поперечной силы видно, что она не меняется по всей длине и равна внешней силе F
  • так как в начале координат x (т.е. справа) мы видим на эпюре «скачок» на величину этой силы, то в конце, в заделке скачок говорит о том, что реакция в заделке равна силе F
  • на эпюре моментов график выходит из нуля координаты x (справа на балке) и момент тоже равен нулю
  • по мере удаления сечения от силы влево момент растет и достигает своей наибольшей величины в заделке, где наблюдается такой же скачок как и на эпюре поперечной силы и равен (- F x). Это говорит о том, что момент в заделке равен именно этому значению

Что такое «скачок» на эпюре

Когда график начинается не из нуля или не из значения полученного на предыдущем участке, а имеет в одном и том же сечении x два разных значения — такой разрыв функции называется скачок. Т.е. если рассматривать график бесконечно близко слева и бесконечно близко справа мы получаем два разных значения как поперечной силы, так и момента. И этот скачок для поперечной силы должен равняться приложенной сосредоточенной силе, а для момента приложенному сосредоточенному моменту.

Вот и все секреты построения эпюр для моментов и поперечных сил. Конечно дальше немного усложняется сам процесс, но принцип остается тот же.

Дальше в видео представлены примеры построения эпюр для распределенной нагрузки изгибающего момента. Чтобы было проще показать разницу все собрано в одном видео:

Ссылки [ править ]

  1. Томас Дердак, Джей П. Педерсон (1999). Международный справочник историй компаний . 26
    . Сент-Джеймс Пресс. п. 82. ISBN 978-1-55862-385-9.

  2. Утренний звонок (2003). «Ковка Америки: История Вифлеемской стали» .
    Дополнение к утреннему звонку
    . Аллентаун, Пенсильвания, США : Утренний звонок.
    Подробная история компании от журналистов сотрудников Morning Call.
  3. ^ a b Гир и Тимошенко, 1997, Механика материалов
    , Издательство PWS.
  4. «Стандартные технические условия ASTM A992? A992M для профилей из конструкционной стали» . Американское общество испытаний и материалов . 2006. DOI : 10,1520 / A0992_A0992M-06A .
  5. ^ a b Горячекатаный прокат и изделия из конструкционной стали — Пятое издание. Архивировано 10 апреля 2013 г. на Wayback Machine — Onesteel . Проверено 18 декабря 2015.
  6. Руководство AISC по стальным конструкциям, 14-е издание
  7. Справочник по стальной конструкции
    (9-е изд.). Канадский институт стальных конструкций . 2006. ISBN 978-0-88811-124-1.
  8. Руководство IMCA по стальным конструкциям, 5-е издание.
  9. «Структурные разделы» (PDF) . Corus Construction & Industrial. Архивировано из оригинального (PDF) 15 февраля 2010 года.
  10. «Ячеистые балки — Kloeckner Metals UK» . kloecknermetalsuk.com
    . Дата обращения 13 мая 2022 .
Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]