При какой температуре сталь нагревается до красна


При какой температуре металл краснеет

Уже в древности люди добывали и плавили медь. Этот металл широко применялся в быту и служил материалом для изготовления различных предметов. Бронзу научились делать примерно 3 тыс. лет назад. Из этого сплава делали хорошее оружие. Популярность бронзы быстро распространялась, так как металл отличался красивым внешним видом и прочностью. Из него делали украшения, орудия охоты и труда, посуду. Благодаря небольшой температуре плавления меди человек быстро освоил ее производство.
Свое латинское название Cuprum металл получил от названия острова Кипр, где его научились добывать в третьем тысячелетии до н. э. В системе Менделеева Сu получил 29 номер, а расположен в 11-й группе четвертого периода.

В земной коре элемент на 23-м месте по распространению и встречается чаще в виде сульфидных руд. Наиболее распространены медный блеск и колчедан. Сегодня медь из руды добывается несколькими способами, но любая технологий подразумевает поэтапный подход для достижения результата.

  • На заре развития цивилизации люди уже получали и использовали медь и ее сплавы.
  • В то время добывалась не сульфидная, а малахитовая руда, которой не требовался предварительный обжиг.
  • Смесь руды и углей помещали в глиняный сосуд, который опускался в небольшую яму.
  • Смесь поджигалась, а угарный газ помогал малахиту восстановиться до состояния свободного Cu.
  • В природе есть самородная медь, а богатейшие месторождения находятся в Чили.
  • Сульфиды меди нередко образуются в среднетемпературных геотермальных жилах.
  • Часто месторождения имеют вид осадочных пород.
  • Медяные песчаники и сланцы встречаются в Казахстане и Читинской области.

Физические свойства

Металл пластичен и на открытом воздухе покрывается оксидной пленкой за короткое время. Благодаря этой пленке медь и имеет свой желтовато-красный оттенок, в просвете пленки цвет может быть зеленовато-голубым. По уровню уровнем тепло- и электропроводности Cuprum на втором месте после серебра.

  • Плoтность — 8,94×103 кг/ м3 .
  • Удельная теплоемкость при Т=20 ° C — 390 Дж/кг х К.
  • Электрическoе удельное при 20−100 ° C — 1,78×10−8 Ом/м.
  • Температура кипeния — 2595 ° C.
  • Удельная электропрoводность при 20 ° C — 55,5−58 МСм/м.

При какой температуре плавится медь

Плавления происходит, когда из твердого состояния металл переходит в жидкое. Каждый элемент имеет собственную температуру плавления. Многое зависит от примесей в металле. Обычная температура плавления меди — 1083 ° C. Когда добавляется олово, температура снижается до 930- 1140 ° C. Температура плавления зависит здесь от содержания в сплаве олова. В сплаве купрума с цинком плавление происходит при 900- 1050 ° C .

При нагреве любого металла разрушается его кристаллическая решетка. По мере нагревания повышается температура плавления, но затем выравнивается по достижении определенного предела температуры. В этот момент и плавится металла. Полностью расплавляется, и температура повышается снова.

Когда металл охлаждается, температура снижается, в определенный момент остается на прежнем уровне, пока металл не затвердеет полностью. После полного затвердевания температура снижается опять.

Это демонстрирует фазовая диаграмма, где отображен температурный процесс с начала плавления до затвердения. При нагревании разогретая медь при 2560 ° C начинает закипать. Кипение подобно кипению жидких веществ, когда выделяется газ и появляются пузырьки на поверхности.

В момент кипения при максимально больших температурах начинается выделение углерода, образующегося при окислении.

Плавление в домашних условиях

Благодаря низкой температуре плавления древние люди могли расплавлять купрум на костре и использовать металл для изготовления различных изделий.

Для расплавки меди в домашних условиях понадобится:

  • древесный уголь;
  • тигель и специальные щипцы для него;
  • муфельная печь;
  • бытовой пылесос;
  • горн;
  • стальной крюк;
  • форма для плавления.

Процесс течет поэтапно, металл помещается в тигель, а затем размещается в муфельной печи. Выставляется нужная температура, а наблюдение за процессом осуществляется через стеклянное оконце. В процессе в емкости с Cu появится окисная пленка, которую нужно устранить — открыть окошко и отодвинуть в сторону стальным крюком.

Можно ли повысить твердость металлов и их сплавов?

Технологии придания большей твердости металлам и сплавам совершенствовались в течение долгих веков. Современное оборудование позволяет проводить термическую обработку таким образом, чтобы значительно улучшать свойства изделий даже из недорогих материалов.

Закалка стали и сплавов

Закалка (мартенситное превращение) — основной способ придания большей твердости сталям. В этом процессе изделие нагревают до такой температуры, что железо меняет кристаллическую решетку и может дополнительно насытиться углеродом. После выдержки в течение определенного времени, сталь охлаждают.

Это нужно сделать с большой скоростью, чтобы не допустить образования промежуточных форм железа.В результате быстрого превращения получается перенасыщенный углеродом твердый раствор с искаженной кристаллической структурой. Оба эти фактора отвечают за его высокую твердость (до HRC 65) и хрупкость.

Большинство углеродистых и инструментальных сталей при закаливании нагревают до температуры от 800 до 900С, а вот быстрорежущие стали Р9 и Р18 калятся при 1200-1300С.

Микроструктура быстрорежущей стали Р6М5: а) литое состояние; б) после ковки и отжига; в) после закалки; г) после отпуска. ×500.

Режимы закалки

Нагретое изделие опускают в охлаждающую среду, где оно остается до полного остывания Это самый простой по исполнению метод закалки, но его можно применять только для сталей с небольшим (до 0,8%) содержанием углерода либо для деталей простой формы. Эти ограничения связаны с термическими напряжениями, которые возникают при быстром охлаждении — детали сложной формы могут покоробиться или даже получить трещины.

При таком способе закалки изделие охлаждают до 250-300С в соляном растворе с выдержкой 2-3 минуты для снятия термических напряжений, а затем завершают охлаждение на воздухе. Это позволяет не допускать появления трещин или коробления деталей. Минус этого метода в сравнительно небольшой скорости охлаждения, поэтому его применяют для мелких (до 10 мм в поперечнике) деталей из углеродистых или более крупных — из легированных сталей, для которых скорость закалки не столь критична.

Начинается быстрым охлаждением в воде и завершается медленным — в масле. Обычно такую закалку используют для изделий из инструментальных сталей. Основная сложность заключается в расчете времени охлаждения в первой среде.

Поверхностная закалка (лазерная, токами высокой частоты)

Применяется для деталей, которые должны быть твердыми на поверхности, но иметь при этом вязкую сердцевину, например, зубья шестеренок. При поверхностной закалке внешний слой металла разогревается до закритических значений, а затем охлаждается либо в процессе теплоотвода (при лазерной закалке), либо жидкостью, циркулирующей в специальном контуре индуктора (при закалке током высокой частоты)

Таблица температур закалки и отпуска сталей

№ п/пМарка сталиТвёрдость (HRCэ)Температ. закалки, град.СТемперат. отпуска, град.СТемперат. зак. ТВЧ, град.СТемперат. цемент., град.СТемперат. отжига, град.СЗакал. средаПрим.
12345678910
1Сталь 2057…63790…820160…200920…950Вода
2Сталь 3530…34830…840490…510Вода
33…35450…500
42…48180…200860…880
3Сталь 4520…25820…840550…600Вода
20…28550…580
24…28500…550
30…34490…520
42…51180…220Сеч. до 40 мм
49…57200…220840…880

Закалка стальных деталей

Закалка придаёт стальной детали большую твердость и износоустойчивость.

Для этого деталь нагревают до определенной температуры, выдерживают некоторое время, чтобы весь объём материала прогрелся, а затем быстро охлаждают в масле (конструкционные и инструментальные стали) или в воде (углеродистые стали).

Обычно детали из конструкционных сталей нагревают до 880–900°C (цвет каления светло-красный), из инструментальных – до 750–760°С (цвет темно-вишнево-красный), а из нержавеющей стали – до 1050–1100°С (цвет темно-желтый).

Нагревают детали вначале медленно (примерно до 500°С), а затем быстро. Это необходимо для того, чтобы в детали не возникли внутренние напряжения, что может привести к появлению трещин и деформации материала.

В ремонтной практике применяют в основном охлаждение в одной среде (масле или воде), оставляя в ней деталь до полного остывания. Однако этот способ охлаждения непригоден для деталей сложной формы, в которых при таком охлаждении возникают большие внутренние напряжения.

Детали сложной формы сначала охлаждают в воде до 300–400°С, а затем быстро переносят в масло, где и оставляют до полного охлаждения. Время пребывания детали в воде определяют из расчета: 1с на каждые 5–6 мм сечения детали. В каждом отдельном случае это время подбирают опытным путём в зависимости от формы и массы детали.

Качество закалки в значительной степени зависит от количества охлаждающей жидкости

Важно, чтобы в процессе охлаждения детали температура охлаждающей жидкости оставалась почти неизменной, а для этого масса ее должна быть в 30–50 раз больше массы закаливаемой детали. Кроме того, перед погружением раскаленной детали жидкость необходимо тщательно перемешать, чтобы выровнять ее температуру по всему объему. В процессе охлаждения вокруг детали образуется слой газов, который затрудняет теплообмен между деталью и охлаждающей жидкостью

Для более интенсивного охлаждения деталь необходимо постоянно перемещать в жидкости во всех направления

В процессе охлаждения вокруг детали образуется слой газов, который затрудняет теплообмен между деталью и охлаждающей жидкостью. Для более интенсивного охлаждения деталь необходимо постоянно перемещать в жидкости во всех направления.

Цвета каления – это… Что такое Цвета каления?

О фильме см. Белое каление (фильм)
Цвета каления

— это цвета свечения металла, раскалённого до высокой температуры. Спектр теплового излучения зависит от температуры, поэтому наблюдая цвета каления можно достаточно быстро, хоть и без высокой точности, определить температуру металла, что часто применяется при термообработке и ковке. Более того, до изобретения бесконтактных термометров это было единственным способом судить о температуре металла. Сокращённые названия цветов каления («красное каление», «белое каление») часто используются металлургами вместо указания температуры.

Зависимость цвета каления от температуры

В таблице перечислены цвета каления, характерные для стали.

Температуpa, °CЦвет каления
550тёмно-коричневый
630коричнево-красный
680тёмно-красный
740тёмно-вишневый
770вишнёвый
800ярко- или светло-вишнёвый
850ярко- или светло-красный
900ярко-красный
950жёлто-красный
1000жёлтый
1100ярко- или светло-жёлтый
1200жёлто-белый
1300белый

Фразеологизм

Выражение «довести до белого каления» имеет и всем известный переносный смысл: «рассердить», «вывести из себя», «привести в бешенство».

Применение[править | править код]

Цвета побежалости возникают чаще всего при окислении, в результате термической обработки металлов. Обычно, при быстром нагреве, они быстро сменяют друг друга, в типичной последовательности: светло-соломенный, золотистый, пурпурный, фиолетовый, синий, и затем, по мере роста толщины плёнки, вновь проявляются, но в несколько приглушённом виде: коричневато-жёлтый, красный…

Цвет побежалости, а также цвета каления – свечения металла, нагретого до высоких температур (например для стали от темнокоричневого цвета при 550°С до белого при 1300°С) в прошлом, до появления пирометров, широко использовали в качестве индикатора температуры нагрева железа и стали при термообработке. По цветам побежалости также судили о температуре нагрева стальной стружки, и, следовательно, резца при операциях точения, сверления, резания.

Цвета побежалости — не очень точный индикатор. На них заметно влияет состав сплава, скорость подъёма температуры, состав газовой среды, время выдержки стали при данной температуре, а также характер освещения и др. факторы.

На легированных сталях цвета побежалости обычно появляются при более высоких температурах, так как легирование обычно повышает стойкость стали к окислению на воздухе.

Цвета побежалости применяются при декоративной отделке стальных изделий, а также при их лазерной маркировке.

Примерные цвета побежалости для сталиправить | править код

Для углеродистой стали характерны следующие переходы цвета: соломенный (220 °C), коричневый (240 °C), пурпурный (260 °C), синий (300 °C), светло-серый (330—350 °С).

Температуpa, °СЦвета побежалости
200Светло-соломенный
220Соломенный
225Светло-жёлтый
230Золотистый
240Коричнево-жёлтый
255Коричневый
260Красно-коричневый
270Пурпурно-красный
280-285Фиолетовый
295-300Ярко-синий (васильковый)
310Светло-синий
320-325Светло-голубой
330-350Светло-серый

На легированных сталях эти цвета побежалости появляются при более высоких температурах.

Выбор светового оборудования по значению Тс

Функциональный подход к определению необходимой температуры света отличается от дизайнерских и специальных задач. В первом случае мы учитываем требования технических стандартов и опыт, накопленный в медицине, на производстве, в дизайне, архитектуре. Во втором — опираемся на эстетические предпочтения и логику декоративных решений. В третьем — выполняем проектные требования.

Температура света в функциональном освещении

2 основных вида функционального освещения — общее и местное. В зависимости от назначения помещения/зоны/объекта/ рекомендуется использовать оборудование со значениями Tc в диапазоне 2400… 7000 К.

Рекомендуемая цветовая температура искусственного освещения, К
ПространствоОбщее осв-ниеМестное осв-ние
Гостиные комнаты2800… 42002400… 4200
Спальни2400… 32002400… 3500
Детские2800… 32002800… 3500
Зоны общего пользования3200… 55003500… 5500
Кухни в квартирах2800… 32003500… 5500
Классы учебных заведений3200… 4500
Офисы4000… 65004000… 6500
Зоны отдыха2200… 32002200… 3000
Склады3200… 55003200… 7000
Цеха, мастерские4000… 70004000… 7000
Типографии65006500
Рекламные агентства4000… 55004000… 6500
Автомобильные трассы3500… 5000
Парки, бульвары5000… 70005000… 7000

Цветовая температура светодиодных ламп может соответствовать любому, обозначенному в таблице диапазону. Поэтому актуальный выбор между LED и ИС другого типа будет зависеть не от Tc, но от других технических, либо экономических параметров.


Рис. 7. Лампы Эдисона — одно из немногих направлений, где светодиоды пока проигрывают

Температура света и задачи дизайна

С помощью выбора ламп определенной спектральной характеристики дизайнер может:

  • подчеркнуть достоинства и смягчить недостатки помещения — например, ядовито зеленые стены станут нежно-салатными, если залить их оранжевым (2200 К) потоком; вульгарный кричащий красный смягчится от подсветки обычным желтым (3200 К); комната прибавит в габаритах, если подчеркнуть вертикали и горизонтали голубыми (7000 К) софитами;
  • сформировать особую эмоциональную атмосферу — лампы Эдисона (2000 К) помогут подчеркнуть интимность, уют бара, кафе, лаунж-зоны; холодная голубоватая подсветка добавит романтизма и пафоса залу античной скульптуры в музее; UV светильники (7000… 9000 К) в ночном клубе подчеркнут графичность поз танцующих, придадут фигурам инопланетной загадочности;
  • эффектно передать цветовые особенности товара на витрине магазина, поместив — мясо — под ИС 2800… 3500 К; рыбу — под металогалогенные или светодиодные лампы с цветовой температурой 4000… 6500 К; ювелирные украшения — под освещение 5500… 6500 К; мебель — под теплые светильники, а шторы и текстиль — под холодные белые.

Tc специальных ИС

Для выполнения отдельных технологических задач предусмотрено использование ИС с узким диапазоном световых волн. В установках обеззараживания воды и светильниках для дезинфекции воздуха стоят бактерицидные лампы с температурой света 12000 К и более. Источники 10000… 15000 К используют также для отверждения композитных клеев и конструкционных композитов в инжиниринге, стоматологии.


Рис. 8. Дезинфекция вагонов метро бактерицидными UV лампами

В растениеводстве применяют натриевые, металогалогенные и светодиодные источники узкого спектра. Необходимые значения их световой температуры зависят от стадии вегетации растений.

Где появляются

Изменение окраски происходит при окислении, которое возникает благодаря разогреванию металла. В процессе нагрева цветовые тона меняются в одной последовательности, но с разными скоростями (в зависимости от увеличения температуры и длительности нагрева).

Благодаря тому, что известна закономерность изменения окраски, в прошлом кузнецы ориентировались на этот факт, чтобы знать, как меняется температура. С развитием технологий появился пирометр.

Цветовые тона для стали

Если смысл описать закономерность изменения окраса побежалостей для углеродистой стали в зависимости от градуса нагрева:

  • соломенный — после 220,
  • коричневый — до 240–250,
  • малиновый — 250–270,
  • фиолетово-синий — от 300,
  • серый — от 350.

Если используется легированная сталь, изменения окраса необходимо ждать при дальнейшем повышении градуса нагрева.

В природе

Помимо стали, в условиях дикой природы встречаются минералы, на которых образуется тонкий слой оксидной пленки. Цвет побежалостей в этом случае может быть золотистым, красным, синим, зеленоватым. Красный цвет побежалости у природных минералов может быть вызван большим количеством хромофоров, содержащихся в его составе. Фиолетово-синий цвет может возникнуть из-за концентрации ионов переходных металлов.

Из-за оттенка оксидной пленки природный окрас минерала не видно. Если стекло или монета долго пролежит под слоем грунта, на их поверхности образуется пленка, которая может изменить цвет поверхности предмета.

Радужные оттенки возникают из-за наличия жировой пленки. Также окрас поверхности стали изменяется из-за высохшей на нем воды с минералами.

Окрас изменяется по определенной закономерности, однако, это не является точным индикатором температуры. Проводя работу по обработке металла, нужно использовать пирометр.

Причины изменения оттенка

Изменение цвета при нагреве говорит о том, что на поверхности нагреваемого материала образуется оксидная пленка толщиной в несколько молекул. Окраска изменяется в зависимости от ее плотности, толщины. Чем больше размер и плотность окислов, тем значительнее будет отличаться цветовой тон от изначального.

Некоторые люди считают, что цветовой тон побежалостей может точно сказать о градусе разогрева, но это ошибочное утверждение. На появление разных оттенков влияет время, скорость нагрева, содержание различных примесей, характер освещения. Если говорить про легированные стали, то их нужно разогреть сильнее.

Закалка и отпуск в кустарных условиях – Кузнечное дело

Тема создана для тех кто делает первые шаги в термообработке,сразу хочу предупредить сам не далеко не гуру в термичке,но немножко разбираюсь,просьба сложных вопросов не задавать и в тупик меня не ставить .Итак сначала довольно общие замечания-контроль температуры нагрева ведётся по цветам каления,контролируется “на глаз” при приглушённом дневном освещении,при определённом навыке можно различать разность температур примерно в 50 градусов ,цвета каления начинаются примерно с 550град(но это заметно только в полумраке)Хорошим ориентиром в определении температуры нагрева детали является так же магнитные свойства стали,а именно при температуре в 768гр(и выше) сталь не магнитится,остывая ниже этой точки магнитные свойства возвращаются, так что нагревая деталь и периодически пробуя её магнитом на “прилипаемость” можно понять что температура достигла 768гр,запомнить цвет каления который при этом был и уже увереннее ориентироваться в цветах каления,а можно и дальше пользоваться магнитом ,особенно если освещение или слишком яркое или наоборот слишком темно и цвета воспринимаются не совсем должным образом.Вот примерно так выглядят цвета и так называются.Почему примерно так выглядят? потому что не совсем так как на картинке(точных цветов в сети так и не нашёл) вот пока пара настоящих фото с цветами каления и температурой.но опять же на моём мониторе они выглядят на указанную температуру,у вас возможно будут выглядеть немного иначе.Будет время(и интерес к теме) продолжу.

Изменено 16.10.2013 15:44 пользователем sanek66

Виды термообработки

Термическая обработка (термообработка) стали, цветных металлов — процесс изменения структуры стали, цветных металлов, сплавов при нагревании и последующем охлаждении с определенной скоростью. Термическая обработка (термообработка) приводит к существенным изменениям свойств стали, цветных металлов, сплавов. Химический состав металла не изменяется.

Отжиг — термическая обработка (термообработка) металла, при которой производится нагревание металла, а затем медленное охлаждение. Эта термообработка (т. е. отжиг) бывает разных видов (вид отжига зависит от температуры нагрева, скорости охлаждения металла).

Закалка

Закалка — термическая обработка (термообработка) стали, сплавов, основанная на перекристаллизации стали (сплавов) при нагреве до температуры выше критической; после достаточной выдержки при критической температуре для завершения термической обработки следует быстрое охлаждение. Закаленная сталь (сплав) имеет неравновесную структуру, поэтому применим другой вид термообработки — отпуск.

Отпуск

Отпуск — термическая обработка (термообработка) стали, сплавов, проводимая после закалки для уменьшения или снятия остаточных напряжений в стали и сплавах, повышающая вязкость, уменьшающая твердость и хрупкость металла.

Нормализация

Нормализация — термическая обработка (термообработка), схожая с отжигом. Различия этих термообработок (нормализации и отжига) состоит в том, что при нормализации сталь охлаждается на воздухе (при отжиге — в печи).

Нагрев заготовки — ответственная операция. От правильности ее проведения зависят качество изделия, производительность труда. Необходимо знать, что в процессе нагрева металл меняет свою структуру, свойства и характеристику поверхностного слоя и в результате от взаимодействия металла с воздухом атмосферы, и на поверхности образуется окалина, толщина слоя окалины зависит от температуры и продолжительности нагрева, химического состава металла. Стали окисляются наиболее интенсивно при нагреве больше 900°С, при нагреве в 1000°С окисляемость увеличивается в 2 раза, а при 1200°С — в 5 раз.

Хромоникелевые стали называют жаростойкими потому, что они практически не окисляются.

Легированные стали образуют плотный, но не толстый слой окалины, который защищает металл от дальнейшего окисления и не растрескивается при ковке.

Общие условия использования

Характеристики марок холодной сварки, приведенные в их документации, будут выполняться только в том случае, когда соблюдается технология нанесения холодной сварки и основные условия ее применения, которые обычно приведены в инструкции по использованию.

В частности, для соединения двух деталей необходимо:

  • зачистить поверхности соединяемых деталей;
  • обезжирить поверхности с помощью ацетона или другого растворителя;
  • отрезать от двухкомпонентного бруска необходимый для использования кусок;
  • размять сварку до получения пластичной массы;
  • нанести состав на поверхности и соединить их;
  • оставить соединение неподвижным до полного затвердения;
  • после полного отвердевания обработать шов наждачной бумагой и окрасить.

Для улучшения свойств холодной сварки в ее состав вводят наполнитель. Тип такого наполнителя зависит от того материала, на сварку которого рассчитана данная марка. Например, для сварки стали в качестве наполнителя используется железный порошок, а для сварки алюминия – пудра из алюминия. Поэтому для качественного соединения деталей необходимо подбирать соответствующую марку.

Недостатки

К недостаткам холодной сварки необходимо отнести:

  • малая прочность на разрыв, что не позволяет использовать эту сварку в ответственных соединениях;
  • неэстетичный вид шва, что требует его последующей обработки;
  • невозможность применения в капитальных работах.

Типы холодной сварки по температуре применения

По температуре применения марки холодной сварки можно разделить на два типа – общего назначения и термостойкие.

При ремонте автомобиля часто требуется восстановить структуру металла. Это могут быть трещины, скол, износ из-за трения, раковины. Если восстанавливать металл с помощью обычной сварки, то это потребует демонтажа деталей, наличия сварочного аппарата, соответствующих условий, опыта сварщика. Во многих случаях задачи ремонта решаются с помощью холодной сварки.

В автомобиле существует большое количество систем, работающих при повышенных температурах. Такие температуры присутствуют не только в глушителях и выхлопных коллекторах, но в двигателе, в масляной и охлаждающей системах, системе торможения, а также в некоторых электрических частях автомобиля.


Примерная стоимость холодной термостойкой сварки на Яндекс.маркет

Для рабочих температур свыше + 200 °С в автомобилях рекомендуется применять составы высокотемпературной холодной сварки.

Справочник: Маркировка стали

Маркировка стали производится несмываемой краской независимо от группы стали и степени раскисления. По соглашению сторон маркировка краской не производится. Буквенные и цифровые обозначения стали: Марки углеродистой стали обыкновенного качества обозначаются буквами Ст и номером (СтО, Ст1, СтЗ и т.д.). Качественные углеродистые стали маркируются двухзначными числами, показывающими среднее содержание углерода в сотых долях процента: 05; 08; 10; 25; 40 и т.д. Буква Г в марке стали указывает на повышенное содержание Mn (14Г ; 18Г и т.д.). Автоматные стали маркируются буквой А (А12, А30 и т.д.). Углеродистые иструментальные стали маркируются буквой У (У8 ; У10 ; У12 и т.д. Здесь цифры означают содержание стали в десятых долях процента).

Первые цифры марки обозначают среднее содержание углерода в стали (в сотых долях процента для конструкционных сталей и в десятых долях процента для инструментальных и нержавеющих сталей). Затем буквой указан легирующий элемент. Цифрами, следующими за буквой,- его среднее содержание в целых единицах. При содержании легирующею элемента менее 1,5% цифры за соответствующей буквой не ставятся. Буква А в конце обозначения марки указывает на то, что сталь является высококачественной. Буквой Ш – особо высококачественной. Сталь обыкновенного качества Ст0; ВСт0, БСт0 – Красный и зеленый Ст1, ВСт1кп – Желтый и черный Ст2, ВСт2кп – Желтый СтЗ, ВСтЗкп, ВСтЗ, БСтЗкп, БСтЗ – Красный Ст4, ВСт4кп, ВСт4, БСт4кп, БСт4 – Черный Ст5, ВСт5 – Зеленый Ст6 – Синий

Углеродистая качественная сталь 08, 10, 15, 20 – Белый 25, 30, 35, 40 – Белый и желтый 45, 50, 55, 60 – Белый и коричневый

Легированная конструкционная сталь Хромистая – Зеленый и желтый Хромомолибденовая – Зеленый и фиолетовый Xромованадиевая – Зеленый и черный Марганцовистая – Коричневый и синий Хромомарганцовая – Синий и черный Хромокремнистая – Синий и красный Хромокремнемарганцовая – Красный и фиолетовый Никельмолибденовая – Желтый и фиолетовый Хромоникелевая – Желтый и черный Хромоникелемолибденовая – Фиолетовый и черный Хромоалюминиевая – Алюминиевый

Коррозионностойкая сталь Хромистая – Алюминиевый и черный Хромоникелевая – Алюминиевый и красный Хромотитановая – Алюминиевый и желтый Хромоникелекремнистая – Алюминиевый и зеленый Хромоникелетитановая – Алюминиевый и синий Хромоникелениобиевая – Алюминиевый и белый Хромомарганценикелевая – Алюминиевый и коричневый Хромоникелемолибденотитановая – Алюминиевый и фиолетовый

Быстрорежущая сталь Р18 – Бронзовый и красный Р9 – Бронзовый

Твердые спеченные сплавы ВК2 – Черный с белой полосой ВКЗ-М – Черный с оранжевой полосой ВК4 – Оранжевый ВК6 – Синий ВК6-М – Синий с белой полосой ВК6-В – Фиолетовый ВК8 – Красный ВК8-В – Красный с синей полосой ВК10 – Красный с белой полосой ВК15 – Белый Т15К6 – Зеленый Т30К4 – Голубой

При какой температуре краснеет сталь

При закалке многих инструментов, например молотков, чеканов, резцов и других, требуется, чтобы закаленной была только рабочая часть, а сам инструмент оставался бы сырым, незакаленным. В этом случае инструмент нагревают немного выше рабочего конца до требуемой температуры, после чего опускают в воду только рабочую часть. Вынув инструмент из воды, быстро зачищают шкуркой или трением о землю его рабочую часть. Оставшееся в неохлажденной части тепло поднимет температуру охлаждаемого конца и появится на нем нужный цвет побежалости, после этого инструмент окончательно охлаждают.

Таблица7 Таблица определения температуры нагрева по цветам побежалости

Цвет побежалостиТемпература, град. СИнструмент, который следует отпускать
Бледно-желтый210
Светло-желтый220Токарные и строгальные резцы для обработки чугуна и стали
Желтый230Тоже
Темно-желтый240Чеканы для чеканки по литью
Коричневый255
Коричнево-красный265Плашки, метчики, сверла, резцы для обработки меди, латуни, бронзы
Фиолетовый285Зубила для обработки стали
Темно-синий300Чеканы для чеканки из листовой меди, латуни и серебра
Светло-синий325
Серый330

Образование окалины на поверхности изделия приводит к угару металла, деформации. Это уменьшает теплопроводность и, стало быть, понижает скорость нагрева изделия в печи, затрудняет механическую обработку. Удаляют окалину либо механическим способом, либо химическим (травлением).

Проба и состав голубого золота

В основе голубых сплавов лежит золото 585 или 750 пробы. Получают их несколькими способами:

  • соединение золота и стали в соотношении 2:1 или 3:1. Иногда в состав входит хром и другие лигатуры. После этого материал приобретает свойства не ржаветь, но при этом обрабатывать его довольно сложно;
  • соединение с индием делает сплав от серо-голубого до насыщенного и синего цвета;
  • при соединении с галлием получают бледно-голубой оттенок.

Небесный цвет золоту придает также родирование. Процесс представляет собой гальваническое нанесение на поверхность изделия тонкой пленки родия. Это позволяет усилить блеск украшений, защитить их от повреждений и химических воздействий.

Отжиг и закаливание дюралюминия

Отжиг

дюралюминия производят для снижения его твердости. Деталь или заготовку нагревают примерно до 360°С, как и при закалке, выдерживают некоторое время, после чего охлаждают на воздухе. Твердость отожженного дюралюминия вдвое ниже, чем закаленного.

Приближенно температуру нагрева дюралюминия детали можно определить так. При температуре 350–360°С деревянная лучина, которой проводят по раскаленной поверхности детали, обугливается и оставляет темный след. Достаточно точную температуру детали можно определить с помощью небольшого (со спичную головку) кусочка медной фольги, который кладут на ее поверхность. При температуре 400°С над фольгой появляется небольшое зеленоватое пламя.

Отожженный дюралюминий обладает небольшой твердостью, его можно штамповать и изгибать вдвое, не опасаясь появления трещин.

Закаливание

. Дюралюминий можно повергать закаливанию. При закаливании детали из этого металла нагревают до 360–400°С, выдерживают некоторое время, затем погружают в воду комнатной температуры и оставляют там до полного охлаждения. Сразу после этого дюралюминий становится мягким и пластичным, легко гнется и куется. Повышенную твердость он приобретает спустя три-четыре дня. Его твердость (и одновременно хрупкость) увеличивается настолько, что он не выдерживает изгиб на небольшой угол.

Наивысшую прочность дюралюминий приобретает после старения. Старение при комнатной температуре называют естественным, а при повышенных температурах – искусственным. Прочность и твердость свежезакаленного дюралюминия, оставленного при комнатной температуре, с течением времени повышается, достигая наивысшего уровня через пять–семь суток. Этот процесс называется старением дюралюминия.

Три способа изготовления патины в домашних условиях

Дикая патина на статуе Свободы

Первый способ – аммиачное патинирование. Для этого нужно взять пластиковый контейнер. На дно положить пару бумажных или обычных полотенец. Смочить их аммиаком. Затем посыпать крупной поваренной солью. Положить медный предмет изделие и посыпать его солью. А потом накрыть еще несколькими полотенцами, и полить все аммиаком.

Срок выдерживания изделия в контейнере зависит от желаемого результата. Первые изменения будут заметны спустя две минуты. Но благородный зеленый цвет будет хорошо виден только через 2 дня. После чего следует промыть изделие и высушить его.

Второй способ – запекание. Нужно взять 5 частей уксуса на 1 часть соли и смешать их. От габаритов изделия будет зависеть количество раствора. Нужно чтобы металл полностью был погружен в жидкость. Выдерживать изделие в растворе нужно час. По истечении времени вынуть его и положить на противень, который предварительно нужно застелить фольгой.

И запекать изделие при температуре 200 градусов до зеленоватого цвета. После нужно опять окунуть металл в раствор и выдержать его там час. Повторить запекание. Такую процедуру нужно повторить 3 раза, если нужен глубокий цвет или 2 раза, если нужен легкий налет старины. После вымыть и высушить металл.

Третий способ – патинирование с помощью яйца. Сварить его нужно вкрутую, очистить и разрезать напополам. Положить половинки яйца и изделие, которое нуждается в патинировании, в целлофановый пакет и завязать его. Яйцо выделяет серный газ, который входя в реакцию с медью, дает зеленый налет изделию. Нужно держать яйцо и изделие в пакете до тех пор, пока результат не станет удовлетворительным. Обычно это требует 1–2 дня.

Что нужно знать о цветах побежалости для нержавеющей стали?

При проведении сварки нержавеющего стального сплава радужные цвета швов могут возникать при более широком диапазоне нагрева (от 300 до 700 градусов). Цвет может варьироваться от синего до светло-желтого в зависимости от степени нагрева. Но в случае коррозионностойких сталей это признак, указывающий на то, что был нарушен слой оксида хрома, выполняющий функцию защиты металлического изделия от возникновения ржавчины. Поэтому какой бы цвет сварного шва не возникал бы в этом случае, следует помнить, что в последствии может возникнуть коррозия.

Кроме того, вас может заинтересовать наша отдельная статья, посвященная особенностям обслуживания сварочного оборудования.

Немного физики

Излучение, исходящее от физического тела, может состоять из 3 потоков фотонов:

  • отраженных — чем глаже поверхность, тем сильнее она отражает. Разные вещества отражают избирательно (лучи одних цветов поглощаются. других — отражаются). Избирательное отражение объясняет смысл использования красителей;
  • преломленных — характеристика прозрачных и полупрозрачных сред, сквозь которые лучи проходят, отклоняясь под определенным углом;
  • излучаемых — зависит от интенсивности нагрева вещества.

Характеристики излучения определяются только тепловой энергией тела независимо от вида вещества. Каждой температуре объекта соответствуют потоки фотонов с определенной длиной волны, воспринимаемые глазом (и интерпретируемые мозгом) человека как имеющие фиксированный цвет. Поэтому цветовой температурой называют цвет излучаемого света, выраженный в значениях температурной шкалы по Кельвину.

Градус в этой шкале обозначают буквой К. По размерности он равен градусу Цельсия. Разница только в нулевой отметке. Ноль по Кельвину — тот самый «абсолютный ноль», при котором элементарные частицы вещества неподвижны, а тело ничего не излучает. 0 К соответствует -273,15 °C.

Цветовая температура равна реальной мере нагрева только у так называемых «абсолютно черных тел» (АЧТ). Это абстрактные объекты, служащие моделями в теоретической физике, которые излучают, но ничего не отражают и не преломляют.


Рис. 1. Абсолютно черное тело излучает свет в видимом спектре исключительно в результате нагрева

Ряд веществ в некоторых температурных диапазонах ведут себя как АЧТ. Например, у расплавленного железа, нагретого до 2000 К, Tc = 2000 К. А вот у газового пламени разница очень существенная: Tc = 9000 К при реальной Т = 1200 К. Так получается, потому что пламя не только излучает, но преломляет и отражает проходящий сквозь него «чужой» и собственный излучаемый свет. Еще одна причина расхождения —спектральное смещение, но рассмотрение этого понятия выходит за рамки темы.


Рис. 2. Расплавленная сталь излучает свет как АЧТ, а Tc газового пламени (9000 К) намного больше его реальной температуры (1200 К)

В маркировку ламп, которые мы применяем в качестве источников света (ИС), в обязательном порядке входит значение цветовой температуры в Кельвинах. В ряде случаев необходимо переводить эту характеристику в длину световой волны или наоборот. Связь двух величин выражается приближенной формулой:

λm · Tc ≈ 3000 мкм · К.

Металл синего цвета

А вот с этим сплавом все гораздо проще. Его некоторые мастера изготавливают из природного золота с добавлением хрома и железа. Полученный сплав достаточно хрупкий, из него тоже полностью изделие выполнить не получится. Он используется лишь как один из элементов декора. Чтобы придать синеву и прочность драгоценному металлу, его состав должен быть следующим:

  • основная составляющая — чистое золото;
  • 22% стали;
  • 25% дорогих редкоземельных металлов (в том числе 2,5% платины и 0,5% иридия).

Такой состав позволит драгоценному металлу носить пробу с обозначением 750.

Имеется еще один способ получить насыщенного цвета синее золото. Нужно объединить жёлтое золото (46%) и индий (54%). Тогда синее золото получится с сероватым оттенком. А если в качестве добавки выступит галлий, то оттенок будет светлым, больше голубым, нежели синим. Проба будет присвоена 585.

Подобный сплав является дорогостоящим и хрупким металлом, поэтому только элитные мастерские могут производить ювелирные украшения из него и использовать синее золото в качестве декора из-за его физико-технических характеристик.

Индекс цветопередачи ламп CRI

Способы пайки светодиодных лент

На комфорт пребывания в помещении и производительность труда влияет не только яркость света, но и его оттенок. Не менее важным является соответствие воспринимаемого цвета реальному. Числовое обозначение этого параметра называется индекс или коэффициент цветопередачи. Обозначается он Rа или CRI, от англ. colour rendering index (коэффициент цветопередачи).

Эталонным является дневной свет. Его CRI равен 100. Производители осветительных приборов не стремятся добиться такого качества. Лампы с коэффициентом более 80 не утомляют глаза, а с Ra больше 90 – субъективно не отличаются от эталонных.


Различие в отображении цветов при разном CRI

При определении Ra производится сравнение восьми эталонных цветов (DIN 6169) по методу Международной комиссии по освещению (CIE). При этом отмечается искажение цвета образцов при исследуемом освещении от цвета при эталонном освещении. Лампы с Тс до 5000К сравниваются с эталонным светильником, дающим спектр излучения чёрного тела, а для светильников с более высокой температурой эталоном является дневной свет.

Средняя величина отклонения вычитается из 100. Результат и есть индекс цветопередачи CRI.

Роль Тс и других параметров при техническом нормировании освещения

При проектировании зданий и сооружений инженеры используют данные по нормированию параметров освещения из СНиП 23-05-95. Документ устанавливает правила выбора по следующим характеристикам (в порядке убывания значимости):

  • освещенность (Ev), лк = лм/м2 — главный параметр в списке;
  • цветовая температура (Tc), К или длина волны (λm), нм;
  • индекс цветопередачи (ИЦ, CRI или Ra), %;
  • Коэффициент пульсации, (Кп), %;
  • наибольшая допустимая яркость (Lmax), кд/м2;
  • Равномерность освещенности;
  • Удельная установленная мощность (Nуд), Вт/м2.

Определяющая функциональную достаточность освещения, освещенность точки пространства зависит от мощности и КПД ИС, геометрии помещения и высот расположения светильников и контрольной поверхности. Освещенность связана нелинейной зависимостью с Tc.

При малой Ev люди хуже видят красный, лучше — синий. Справедливо и обратное утверждение: чем выше Ev, тем лучше различаются оттенки красного и хуже — синего. Этот эффект отражен на графике визуального комфорта Круитхофа.


Рис. 9 Поле оптимизации Круитхофа

Благодаря кривым Круитхофа мы получаем возможность оптимизировать освещение равной степени комфортности, используя разные типы ламп.

Индекс цветопередачи характеризует способность истлчника света передавать естественные тона освещаемого объекта в сравнении с условным идеалом — отраженным полуденным солнцем (5500 К). Самые высокие индексы IRC демонстрируют лампы накаливания (до 98 %), а также металогалогенные и светодиодные ИС (до 95 %).

Остальные параметры нормирования напрямую не связаны с цветовой температурой.

Освещение отдельных типов объектов и систем может нормироваться отраслевыми техническими стандартами. Например, для автомобильных дорог в РФ действует ОДМ 218.8.006-2016.

Группы, которые содержат диапазоны свечения источника света

В наше время источники света разделены на три группы:

  1. Тёплого свечения, белого. Это теплота свечения в пределах от 2700 до 3200 Кельвинов. Считается целесообразно применять такое освещение в жилых комнатах.
  2. Дневного света, белого. Этот диапазон составляет от 3500 до 5000 Кельвинов. Такое свечение наиболее похоже на утренний солнечный свет. 5000 К цветовая температура нейтрального диапазона, рекомендуется к применению в санузлах или прихожей.
  3. Также 5000 К цветовой диапазон применяется в учебных заведениях, офисах, в аллеях, парках и на производстве.
  4. Холодного свечения, белые. Диапазон света составляет от 5000 Кельвинов цветовой температуры до 7000 К, температура К 6500 также входит в этот диапазон.

Что такое цветовая температура

Подключение светодиодных ламп

Все тела при нагреве излучают свет: вначале инфракрасный, а затем видимый. По спектру этого излучения можно определить температуру тела. Она измеряется в Кельвинах (К).

И наоборот, каждому оттенку цвета излучения соответствует температура предмета. Поэтому оттенки белого цвета принято обозначать в Кельвинах, чтобы не придумывать определения типа “светло-жёлтый” или “белый с голубым отливом”:

  • 0°К – абсолютно чёрное тело, отсутствие любого излучения;
  • 800°К (527°С) – тёмно-красный цвет;
  • 1300°К (1027°С) – ярко-красный. Так светится нагретый металл;
  • 2000°К (1727°С) – оранжевый. Это цвет углей (не пламени) в камине;
  • 2700°К – тёплый белый цвет. Так светятся лампочки накаливания;
  • 4500°К – нейтральный белый. Цвет пасмурного дня;
  • 5000°К – белый. Такой оттенок имеет цвет солнечного полдня;
  • 6800°К – холодный белый. Освещение на восходе солнца;
  • 9000°К – голубой. Цвет термоядерной реакции.


Цветовая температура в Кельвинах

При какой температуре краснеет железо?

ЦВЕТА КАЛЕНИЯ – цвета свечения металла, зависящие от температуры нагрева. Цвета каления, характерные для стали, смотри в таблице Температуpa, ° С Цвет каления 550 Темно-коричневый 630 Коричнево-красный 680 Темно-красный 740 Темно-вишневый 770 Вишневый 800 Ярко- или светло-вишневый 850 Ярко- или светло-красный 900 Ярко-красный 950 Желто-красный ЦВЕТА ПОБЕЖАЛОСТИ – радужная окраска, возникающая на чистой поверхности нагретого металла в результате появления на нем тонкого слоя оксидов. цвета побежалости, характерные для углеродистой стали, смотри в таблице Температуpa, °С Цвет побежалости 220 Соломенный 230 Золотистый 240 Коричневый 250 Красно-коричневый 260 Пурпурный 280 Фиолетовый 300 Синий (васильковый) 320 Светло-голубой 330-350 Светло-серый На легированных сталях эти цвета побежалости появляются при более высоких температурах.

ну судя по тенам в печке градусов в 150

Не понятно, почему ответ дан про металл, когда вопрос про железо. И на эту тему есть замечательный анекдот.: – Товарищи солдаты, на разгрузку люмини, на прааа-во! – Извините, товарищ прапорщик, не люминь, а алюминий. – А шипко грамотные, на разгрузку чугуния, на леее-во! Да ещё кто-то ответ выбрал лучшим. А это, как говорят, -“Я Тебя про Фому, а Ты мне про Ерёму.” Так какова же температура раскалённого до красна железа?

Следы побежалости на металле

Опубликовал: Kirill B. Бытует мнение, что цвета побежалости при сварке углеродистых сталей являются дефектом. Мне лично пару раз приходилось такое слышать и однажды, увидев комментарии к фотографии шва с яркими цветами побежалости, что это явный дефект, решил разобраться в вопросе более подробно. Этакий MYTHBUSTERS предлагаю посмотреть под катом.

Начнем с определения.

Цвета побежалости — радужные цвета, образующиеся на гладкой поверхности металла или минерала в результате формирования тонкой прозрачной поверхностной оксидной плёнки (которую называют побежалостью) и интерференции света в ней.

Эти цвета ранее использовали для определения температуры при термообработке стали. Но это не очень точный индикатор. На окрас влияет скорость подъёма температуры, состав газовой среды, время выдержки стали при данной температуре, а также характер освещения и др. факторы.

Между толщиной плёнки и длиной волны отраженного ею света существует прямая зависимость: чем больше толщина пленки, тем более коротковолновый отраженный свет мы получаем. Например, синий цвет образуется, когда из белого «вычитаются» более длинные волны, например, красный и оранжевый, а жёлтый образуется при «вычитании» из спектра коротковолнового излучения, например, фиолетового и синего (закройте правую часть радуги, что показана выше). Получается, что синий цвет соответствует более высокой температуре нагрева, а жёлтый — более низкой.

Интересно про цвета побежалости написано здесь.

Рассмотрим схему участков сварного соединения и их термический цикл.

Нам интересен участок №7. Он также называется участком синеломкости и охватывает температурный диапазон от 200 до 400 °С. На этом участке наблюдаются синие цвета побежалости на поверхности металла (откуда и название). При сварке низкоуглеродистых сталей основной металл в этой зоне не имеет видимых структурных изменений, но наблюдается резкое падение ударной вязкости из-за снижения пластичности. Это происходит в тех случаях, когда в сталях содержится кислород, азот и водород в несколько избыточном количестве. Размеры отдельных участков ЗТВ и общая ширина ее зависят от условий нагрева, охлаждения и способов сварки.

При сварке нержавеющих сталей цвета побежалости также проявляют себя, но в других диапазонах температур. Для нержавеющих сталей изменение цвета при нагреве на воздухе наблюдается: светло-соломенный (300°C), соломенный (400°C), красно-коричневый (500°C), фиолетово-синий (600°C), синий (700°C).

Побежалость для коррозионностойких сталей является более критичной, т.к. является показателем того, что пассивный (защитный) слой поврежден, и в этом месте могут возникнуть очаги точечной (питтинговой) коррозии. Поэтому поврежденный слой необходимо зачищать либо лепестковыми кругами, либо щеткой с ворсом из нержавейки (не допускается зачистка стальной щеткой), либо травление.

Итак, получается, что цвета побежалости – неизбежное явление при сварке сталей. Кроме того, в Инструкции по визуальному и измерительному контролю (РД 03-606-03) такой дефект не определен. Они указаны там лишь только как загрязнение, препятствующее контролю и которое должно быть зачищено.

Вероятно, это считают дефектом по ошибке — путают со сваркой титана. Здесь должна обеспечиваться надежная газовая защита поверхности металла нагретой свыше 400°C. О хорошей газовой защите свидетельствует блестящая серебристая поверхность. Появление на шве желто-голубых цветов побежалости указывает на нарушение защиты, а серый налет свидетельствует о плохой защите.

Интересен тот факт, что цвет побежалости считается дефектом сварного соединения, появляется и в нормативных документах. Например, в СТО-ГК “Трансстрой” 005-2007 Стальные конструкции мостов. Технология монтажной сварки.

Также мне попалась интересная статья по разработке метода определения сварочных напряжений по цветам побежалости. Нюанс в том, что исследована модель однопроходного шва. Будет ли этот метод работать на многопроходных швах?

В следующей статье мы попытаемся выяснить, можно ли определить был или не был перегрет металл, исходя из ширины участка синеломкости. Что касается вопроса в заголовке статьи, то, я думаю, ответ очевиден — наличие цветов побежалости не является дефектом для углеродистых сталей.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]