Промышленная обработка металлов включает в себя несколько десятков способов и методов изменения формы, объема и, даже молекулярной структуры материала. Электроискровая обработка металлов — одна из распространенных технологий работы с металлом, отличающаяся высокой точностью и производительностью. При помощи электроискровых станков можно:
- резать металл;
- сверлить отверстия микроскопического диаметра;
- наращивать дефектные области деталей;
- производить ювелирные работы с драгоценными металлами;
- упрочнять поверхность изделий;
- шлифовать изделия самой сложной формы;
- извлекать застрявшие сломанные сверла и резцы.
На базе электроискрового метода обработки металлов создано немало станков промышленного назначения. Это высокоточная и дорогая техника, которую могут позволить себе купить только крупные предприятия, специализирующиеся на металлообработке.
Электроискровой станок
Но иногда электроискровые станки требуются и в мастерских или цехах, где их услуги требуются время от времени. Для этого можно купить промышленное устройство с несколько ограниченными возможностями (функционал в пределах самых востребованных операций), или построить самодельный электроискровой станок. Это вполне возможно даже в домашних условиях, не говоря уже о предприятиях, в составе которых есть токарные и электромеханические цеха или участки.
Принцип работы электроискрового станка
Базируется обработка металлов электроискровым способом на свойстве электрического тока переносить вещество при пробое. При высоком напряжении и силе постоянного тока (1-60 А) анод (положительно заряженный электрод) нагревается до высокой температуры в пределах 10-15 тысяч градусов Цельсия, расплавляется, ионизируется и устремляется к катоду. Там, в силу электрических взаимодействий он осаживается.
Чтобы в процессе работы не возникала полноценная электрическая дуга, электроды сближаются только на короткие мгновения, длящиеся доли секунда. За это время возникает искра, разрушающая анод и наращивающая катод. Обрабатываемый участок подвергается нагреву и воздействию электротока на протяжении миллисекунд, при этом соседние области и лежащий ниже слой не успевают прогреться и структура их не нарушается. Проблема пограничных состояний не возникает в принципе.
Если требуется резка или сверление — катодом служит рабочий инструмент, а анодом — обрабатываемая деталь. При наращивании, укреплении поверхности или восстановлении формы детали, они меняются местами. Для этих видов обработки созданы специальные станки, каждый из которых выполняет свои операции.
Инструментом в установках электроэрозионного действия служат латунные или медно-графитные электроды, хорошо проводящие ток и недорогие в изготовлении. С их помощью можно резать и сверлить самые твердые сплавы. Чтобы металл катода не оседал на электроде и не увеличивал его размера, процесс происходит в жидкой среде — жидкость охлаждает капли расплава, и он не может осесть на электроде, даже если и достигает его. Вязкость жидкости определяет скорость движения материальных частиц, и они не успевают за током. Металл оседает в ванне в виде осадка и не мешает дальнейшему прохождению тока.
При наращивании поверхности деталей или укреплении, металл с анода переносится на катод. В этом случае на вибрационной установке закрепляется положительный электрод, служащий донором металла, а деталь присоединяется к отрицательному полюсу. Вода или масло в этом процессе не используются, все происходит в воздухе.
Электролитический метод наращивания
Восстановление деталей электролитическим методом наращивания заключается в осаждении металла из водного раствора на детали. Электролитическое наращивание применяют для повышения износостойкости и коррозионной стойкости детали, восстановления размеров деталиРемонт систем трубопроводов и арматуры судна и для декоративных целей.
При ремонте деталей применяют:
- хромирование;
- осталивание;
- меднение и другие покрытия.
Хромирование используют как при ремонте деталей механизмов, так и при изготовлении новых деталей. Хромовые покрытия бывают гладкие и пористые. Гладкий твердый хром обладает ценными физико-механическими свойствами. Пористое же хромирование применяют с целью повышения износостойкости судовых деталей, работающих в условиях недостаточной смазки.
Сухогруз Kkaye E. Barker, озеро Мичиган
Износостойкость чугуна, покрытого гладким хромом, повышается в 4—7 раз, а покрытого пористым хромом — в 30—150 раз. Для устранения пористости, ограничивающей применение хромовых покрытий для судовых деталей, работающих в коррозионной среде, применяют комбинированное покрытие, на нанесенные слои меди, кадмия или никеля либо последовательно меди и никеля наносят слой хрома.
Толщина откладываемого слоя хрома колеблется в пределах 15—30 мкм. Хромированием восстанавливают детали, имеющие небольшой износ, так как толщина хромового покрытия практически лежит в пределах 0,05—0,3 мм на сторону. При большой толщине покрытий прочность хромированного слоя уменьшается, хромирование становится экономически невыгодным. Процесс хромирования состоит из следующих операций.
Восстанавливают геометрию детали:
- проточкой;
- шлифовкой;
- полировкой.
Для электролитического полирования применяют электролиты различного состава:
- смесь серной, фосфорной и хромовых кислот;
- смесь серной и лимонной кислот;
- смесь различных минеральных кислот и глицерина.
Обезжиривают деталь в электрических ваннах с электролитом (30—50 г едкого натра на 1 л воды). Для ускорения процесса обезжиривания рекомендуется добавка силиката натрия (жидкое стекло) в количестве 0,5—1 г/л. Процесс электролитического обезжиривания длится 2—3 мин. Промывают детали в горячей воде и в проточной.
При этом деталь подвергают декапированию с целью удаления оксидных пленок, могущих образоваться в процессе подготовки детали к хромированию. Декапирование заключается в легком протравлении поверхности детали в 2—3%-ном растворе серной кислоты. При температуре раствора 18—20°С деталь выдерживают 4—5 мин для выравнивания ее температуры с температурой электролита.
Сухогруз Edgar B. Speer, озеро Мичиган
Наибольшее распространение получило анодное декапирование, заключающееся в том, что деталь, помещенная в ванну для нагрева ее до температуры ванны и являющаяся анодом, выдерживается в течение 30—50 с под током плотностью 20—26 А/дм2. Декапируют непосредственно перед хромированием. Обычно поверхности деталей, не подлежащих хромированию, покрывают лаками.
Предлагается к прочтению: Виды и организация ремонта судов
Хромирование проводят в железных ваннах с двойными стенками, пространство между которыми заполняется горячей водой для регулирования постоянства температуры электролита в ванне. В ванну наливают воду, нагревают ее до температуры 70°С, вводят компоненты электролита, подключают постоянный ток напряжением 6—12 В. Для выравнивания концентрации электролита деталь, закрепленную на подвеске, 3—4 раза окунают в раствор, а затем подвешивают на катодную штангу.
Плотность тока при хромировании 20—50 А/дм2, а продолжительность зависит от толщины покрытия, состава электролита, режима работы ванны. Анодом при хромировании служат свинцовые пластины, располагаемые концентрично относительно детали и имеющие поверхность в 2 раза более, чем поверхность хромируемой детали.
После хромирования деталь подвергают анодной обработке с целью получения пористой поверхности при плотности тока 25—35 А/дм2 и при температуре 30—40°С в течение 10—20 мин. Затем производят промывку детали холодной и горячей водой.
Осталивание — процесс электролитического осаждения железных покрытий из водных растворов хлористого FeCl24H2О или сернокислого FeSO47H2O железа. Электролитическое осаждение железа из водных растворов солей было получено академиками Б. С. Якоби, Е. И. Клейманом и Э. X. Ленцем в 1868—1870 гг. При прохождении постоянного тока через раствор солей ионы железа разряжаются на катоде (детали), таким образом катод покрывается слоем железа. Анод растворяется, а его ионы попадают в раствор.
На. рис. 3 показана схема установки для осталивания деталей, которая состоит из ванны с электролитом 1, кольцевого анода 2, подвески 3 для крепления детали, подлежащей покрытию, термометра 4 для контроля температуры электролита, генератора 5, электрической спирали для нагрева ванны 6, реостата 7.
Рис. 3 Схема установки для осталивания деталей
Осталивание — менее сложный и более дешевый процесс, чем хромирование. Например, выход по току при осталивании достигает 70—90%, плотность тока 10—20 А/дм2, толщина осадка в час при применяемой плотности тока 0,013—0,26 мм. Толщина слоя железа при мягком осталивании (140—225 НВ) — более 3 мм, при твердом покрытии (225—600 НВ) — до 2 мм. Покрытия низкой твердости применяют для восстановления нетрущихся поверхностей деталей, наружных поверхностей бронзовых втулок верхней головки шатуна, вкладышей и др.
Технология осталивания следующая:
- деталь очищают от грязи;
- промывают в бензине;
- зачищают места покрытия наждачной бумагой или пескоструйным способом;
- изолируют не подлежащие покрытию участки перхлорвиниловым лаком или резиной;
- монтируют деталь на подвесках;
- обезжиривают известью;
- промывают холодной проточной водой;
- пассивируют в специальном электролите при плотности тока 10—40 А/дм2 в течение 2—5 мин;
- промывают горячей водой;
- загружают в ванну с электролитом и подогревают раствор.
Вынув из ванны деталь:
- промывают горячей водой;
- нейтрализуют в щелочном растворе;
- промывают горячей водой;
- демонтируют подвески;
- удаляют изоляцию;
- осуществляют старение;
- механически обрабатывают.
При введении в хромовый электролит ионов кадмия получается покрытие, обладающее:
- твердостью;
- износостойкостью;
- полным отсутствием пористости.
Сухогруз American Integrity Источник: www.shipspotting.com
Хромокадмиевое покрытие, в частности, применяется для рабочих шеек гребных валов и стальных облицовок.
Меднение осуществляют для повышения защитно-декоративных свойств стальных деталей. В этом случае используют многослойные покрытия, медь—никель или медь—никель—хром. Медь откладывается на подслой никеля. В судоремонте для меднения применяют сернокислые электролиты. В качестве анодов применяют электролитическую медь.
Никелирование стальных деталей производят для повышения их защитно-декоративных свойств. Никель защищает основной металл от коррозии. Иногда никелевые покрытия вследствие их значительной твердости используются как износостойкие. При нанесении никелевого покрытия должна быть обеспечена шероховатость поверхности детали не менее Rz = 80 ÷ 20 мкм. Под блестящее никелирование, при котором не требуется точных размеров, деталь полируют, а детали, имеющие точные размеры, обрабатывают под Ra = 0,32 ÷ 0,16 мкм.
Технологические показатели
Электроискровая установка, в зависимоти от режима роботы, может обеспечивать точность результата в широких пределах. Если требуется высокая производительность при относительно невысоких требованиях к состоянию поверхности (I и II класс), то используются токи 10-60 А при напряжении до 220В. В этом случае электроискровая эрозия может удалить из зоны реза или сверления металл в объеме до 300 мм3/мин. При более высоких показателях класса точности — VI и VII, производительность снижается до 20-30 мм3/мин, но и токи требуются поменьше, не более 1 А при напряжении до 40 В.
Такой широкий диапазон регулировок показывает, что электроискровая обработка металла может использоваться в различных областях, как для производства крупных серий деталей, так и для разовых работ, включая ювелирные.
Особенностью применения электроискровых установок можно считать возможность укрепления деталей различной конфигурации. На поверхность заготовки наноситься тончайший слой более прочного сплава или металла без нагрева основания на большую глубину. Это позволяет сохранить структуру металла базового изделия и значительно изменить свойства его поверхности. В некоторых случаях требуется вязкость основания и высокая твердость поверхности, или в обратном порядке. Решить эту задачу может только электроискровой станок.
Схема электроискрового станка
Обработки металлов электроискровым способом очень распространена, поэтому очень сложно рассмотреть все виды оборудования и модели конкретных установок. Они все объединены общими конструктивными элементами:
- источником постоянного тока;
- конденсатором;
- вибратором;
- переключателем режимов.
Конструкция, работающая в электроискровом режиме, может отличаться рядом характеристик, допускающих работу с тем или иным материалом, но общие принципы построения рабочей схемы одинаковы.
Батарея конденсаторов согласована с механическим движением электрода, разряд происходит в момент максимального сближения рабочих поверхностей. Релаксационные генераторы импульсов определяют максимальный заряд конденсатора при максимальной амплитуде отклонения от точки сближения. После искрового разряда конденсатор успевает зарядиться в полном объеме.
Электроискровой станок своими руками
Одной из главных деталей электроискровой установки, которую можно реализовать своими руками, конечно, при соблюдении всех правил техники безопасности, приведена ниже. Следует отметить, что это только одна из многих схем, которые можно использовать в конструкции станка.
Ориентировочная схема генератора искровых разрядов
Рабочий стол станка должен быть оборудован системой удаления окислов (непрерывной подачей масла или керосина). Они снижают вероятность отложения оксидной пленки на поверхности детали и, в результате, прекращения искрообразования. Для пробоя необходим надежный электрический контакт. Как основной вариант можно использовать ванночку, заполненную жидкостью.
Электрод представляет собой латунную или медную проволочку требуемого диаметра, которая закреплена в зажиме. Зажим, в свою очередь, представляет собой деталь вертикального штока кривошипно-шатунного механизма, который приводится в движение от электродвигателя. Частота возвратно-поступательного движения электрода выбирается в зависимости от особенностей обрабатываемого материала.
Все токопроводящие детали и кабели должны быть качественно и надежно изолированы, сама установка заземлена. Посмотреть, как работают бытовые самодельные установки можно на видео:
Следует отметить, что самодельные станки никогда не сравняются по возможностям с промышленными, например серией АРТА. Для производства кустарных изделий или использования в качестве одного из видов хобби, они, может быть и пригодны, но для работы в мастерской или слесарном цехе не «дотягивают». Не говоря уже о том, что сложность электрической схемы и необходимость точного согласования кинематики и разряда конденсатора делают их очень сложными в регулировке.
Реферат на тему «Электроискровая и электроимпульсная обработка металла»
Кафедра «МЕНЕДЖМЕНТ НА АВТОМОБИЛЬНОМ ТРАНСПОРТЕ»
«Естествено-Научные Основы Современных Технологий»
Тема проекта:
«Электроискровая и электроимпульсная обработка металла»
ВВЕДЕНИЕ
К электротехнологии относятся электрические способы обработки металлов, получившие большое развитие за последнее десятилетие.
Электрическими способами обработки называются такие виды обработки, при осуществлении которых съем металла или изменение структуры и качества поверхностного слоя детали являются следствием термического, химического или комбинированного действия электрического тока, подводимого непосредственно (гальваническая связь) к детали и инструменту. При этом преобразование электрической энергии в другие виды энергии происходит в зоне обработки, образованной взаимодействующими поверхностями инструмента и обрабатываемой детали.
Электрическая обработка включает в себя электроэрозионные, электрохимические, комбинированные электроэрозионно-химические и электромеханические способы обработки (схема 1).
При электроэрозионных способах обработки съем металла и изменение свойств поверхности детали являются результатом термического действия электрического тока.
В свою очередь, электроэрозионные способы обработки металлов по назначению различаются на способы, при помощи которых осуществляется:
а) электроэрозионная размерная
обработка металлов (съем металла и придание заготовке заданной формы и размера);
б) электроэрозионное упрочнение
или
покрытие
(изменение свойств поверхностного слоя).
В настоящее время известны и применяются следующие основные способы электроэрозионной обработки: электроискровой, электроимпульсный
и
электроконтактный
. Практически к этой же группе следует отнести
и анодно-механический
способ, так как электрохимический съем металла (анодное растворение) применяется лишь на доводочных режимах и притом не во всех случаях использования этого метода.
Схема 1. Общая классификация электроэрозионных способов обработки металлов.
Как видно из схемы 1, электроискровой
и
электроимпульсный
способы позволяют произвести как съем металла, так и упрочнение;
анодно-механический
и
электроконтактный
— только съем металла.
В зависимости от того, каким способом производится обработка или упрочнение, можно говорить об электроискровой, электроимпульсной
,
электроконтактной
или
анодно-механической
размерной обработке или упрочнении.
Приведенные определения и классификация позволяют рассматривать электрическую обработку металлов как самостоятельную отрасль электротехнологии.
С появлением электрических способов обработки оказалось в принципе возможным осуществление методами электротехнологии всего комплекса операций, необходимых для превращения заготовки в готовую деталь, включая и ее термическую обработку.
Электроэрозионные способы не исключают механическую обработку, а дополняют ее, занимая свое определенное место, соответствующее их особенностям, а именно: возможности обработки токопроводящих материалов с любыми физико-механическими свойствами и отображения формы инструмента в изделии. Следовательно, использование электроэрозионных способов обработки будет развиваться с повышением твердости и вязкости обрабатываемых материалов, с усложнением формы детали и обрабатываемых поверхностей (полости сложной конфигурации, отверстия с криволинейной осью, отверстия весьма малого диаметра, тонкие и глубокие щели простой и сложной формы и т. п.), наконец, с улучшением технико-экономических показателей электроэрозионных способов обработки — повышением производительности, чистоты поверхности, точности, стойкости инструмента и снижением энергоемкости процесса.
Особо перспективным является использование электрических способов для обработки деталей из твердых сплавов, жаропрочных сталей и специальных трудно обрабатываемых сплавов, получающих все большее применение в связи с повышением давлений, температур и скоростей в машинах и аппаратах.
Отдельные элементы разновидностей и частные применения электроэрозионной обработки металлов были известны давно. Например, резка металлов с наложением электрического тока (так называемая, электрофрикционная
резка, близкая по схеме и параметрам к
электроконтактной
обработке) применялась около 70 лет тому назад; поверхностное упрочнение угольным электродом с помощью электрического тока по методу Д. Н. Дульчевского предложено в 1928 г. и др.
Однако быстрое развитие способов электроэрозионной обработки металлов и превращение их в самостоятельную отрасль электротехнологии началось вскоре после изобретения в 1943 г. Б. Р. и Н. И. Лазаренко электроискрового
способа и В. Н. Гусевым —
анодно-механического
способа.
Эти способы были дополнены в 1948 г. новым применением электроконтактной обработки (заточка по методу инж. М. Е. Перлина), получившим дальнейшее развитие в работах Харьковского электротехнического института, Харьковского подшипникового завода (обработка шаров по методу инж. Б. П. Гофмана), ХТЗ имени Орджоникидзе (обработка траков), научно-исследовательского института Минсудпрома (обработка гребных винтов) и др.
Развитие электроискрового
и
анодно-механического
способов шло по линии создания многочисленных опытных конструкций приспособленных и специальных электроэрозионных станков, автоматических регуляторов и освоения новых технологических операций. Технические характеристики этих способов — производительность, стойкость инструмента, энергоемкость, удобство в эксплуатации — за этот период не получили сколько-нибудь существенного изменения в лучшую сторону.
В электроискровом
способе, основанном на применении зависимых (конденсаторных) релаксационных генераторов импульсов, практически исчерпаны возможности дальнейшего повышения производительности, снижения износа инструмента и энергоемкости. Оказались необходимыми принципиально новые технические решения и отказ от конденсаторных схем. Первые шаги в этом направлении были сделаны в 1950 г. в Конструкторском Бюро Министерства Станкостроительной и Инструментальной Промышленности (КБ МСиИП) в области создания новых источников питания импульсным током (независимых генераторов импульсов) для прошивочно-копировальных работ и Одесским политехническим институтом в области разработки источников импульсного тока для обработки вращающимся инструментом на мягких режимах (для изготовления надфилей).
Новый способ обработки, основанный на применении независимых генераторов импульсов напряжения и тока, получил название электроимпульсного.
С 1951 г. электроимпульсный
способ разрабатывался в тесном содружестве тремя организациями: Конструкторским бюро МСиИП, Лабораторией электрических методов обработки Экспериментального научно-исследовательского института металлорежущих станков и кафедрой электрических машин Харьковского политехнического института имени В. И. Ленина.
Электроимпульсный
способ обработки при осуществлении прошивочно-копировальных работ позволил по сравнению с
электроискровым
способом повысить скорость съема металла на жестких режимах в 5-10 раз при наличии возможности ее дальнейшего увеличения, снизить износ инструмента в 5-20 раз и энергоемкость в 2-3 раза.
Приводимые в данной работе сведения характеризуют в целом современное состояние техники, технологии и производственного использования электроэрозионной обработки металлов. Наибольшее внимание уделяется при этом электроимпульсному
способу обработки, обладающему лучшими технико-экономическими показателями и более широкой областью применения, чем
электроискровой
. Из различных применений
электроимпульсной
обработки излагаются, в основном, более исследованные прошивочно-копировальные работы, представляющие наибольшую трудность для осуществления и более универсальные по технологическим возможностям.
Электрическая обработка металлов и ее разновидность — электроэрозионная обработка — представляют самостоятельную отрасль электротехнологии, находящуюся на начальной ступени развития.
ФИЗИЧЕСКИЕ УСЛОВИЯ ОСУЩЕСТВЛЕНИЯ РАЗМЕРНОЙ ЭЛЕКТРОЭРОЗИОННОЙ ОБРАБОТКИ
Для обеспечения качественной размерной обработки металлов за счет использования теплового действия электрического тока необходимо соблюдение следующих трех основных условий:
1. Энергия электрического тока должна подводиться к обрабатываемому участку в виде импульса достаточно малой продолжительности (локализация элементарного съема металла во времени).
При непрерывном подводе энергии теряется точность обработки, появляется дефектный оплавленный подслой, ухудшается чистота поверхности и теряется одно из основных технологических качеств электрических способов обработки — свойство отображения
(копирования) формы инструмента в детали.
Примером обработки при непрерывном подводе энергии может служить разрезка или выжигание отверстий электрической дугой; в этом случае точность и чистота поверхности в месте реза неприемлема для размерной обработки.
2. Участок детали, к которому подводится импульс энергии, должен быть достаточно мал (локализация элементарного съема металла в пространстве).
Для того, чтобы произвести при подводе импульса энергии к большому участку съем металла, необходимо соответственно увеличить энергию импульса, что приведет к увеличению элементарного съема. Чем больше элементарный съем металла, тем хуже, естественно, чистота поверхности и ниже точность обработки.
Если сохранить при увеличенном элементарном участке импульс энергии неизменным, то съем металла может вообще не произойти, так как подведенной энергии будет недостаточно для расплавления элементарного съема.
3. Импульсы энергии должны подводиться к элементарным участкам объема металла, подлежащего удалению, непрерывно и с достаточной частотой (локализация процесса обработки во времени). Это условие обеспечивает непрерывность процесса и получение требуемой производительности.
Указанным трем условиям удовлетворяют в разной степени электрические способы обработки, основанные на тепловом действии электрического тока.
РАЗНОВИДНОСТИ ЭЛЕКТРОЭРОЗИОННОЙ ОБРАБОТКИ МЕТАЛЛОВ
Электрическую обработку металлов можно разделить на три группы.
К первой
группе, основанной на чисто контактном подводе энергии, относится
электромеханическая
обработка.
Так как чисто контактный подвод энергии не удовлетворяет трем условиям размерной обработки, вследствие чего съем металла не достигается, при электромеханическом
способе съем металла осуществляется резцом, режущая кромка которого является в то же время контактирующей поверхностью.
К резцу и обрабатываемой детали подводится переменный ток, производящий в месте контакта нагрев детали. Электрический контактный нагрев служит лишь целям уменьшения усилий резания и может быть заменен другими источниками тепла — дугой, пламенем ацетиленовой горелки, высокочастотным нагревом и т. п.
Как показывает расчет и опыт, с энергетической точки зрения введение электрического тока через резец в общем случае является нецелесообразным и не дает повышения производительности и увеличения стойкости инструмента. Последнее объясняется тем, что ввиду малых падений напряжения в месте контакта, для создания сколько-нибудь существенного нагрева необходимо вводить весьма большие токи; при этом резец оказывается, с точки зрения отвода тепла, в значительно более тяжелых условиях, чем обрабатываемая деталь. Поэтому происходит разогрев режущей кромки и снижение стойкости резца.
При малых же токах нагрев изделия настолько ничтожен, что практически не оказывает влияния на величину усилия механического резания.
Вторая
группа включает способы обработки, применяющие подвод энергии через канал разряда. К этой группе относится
электроискровой
и
электроимпульсный
способы и промежуточные разновидности, например, такие, как обработка апериодическими импульсами на релаксационном генераторе, включающая в себя элементы обоих способов.
Третья
группа, объединяющая
диодно-механический
и
электроконтактный
способы со всеми разновидностями, основана на применении комбинированного контактно-дугового подвода энергии.
Схема 2. Классификация электроэрозионных способов обработки металлов по методам подвода энергии.
На схеме 2 показана классификация способов электроэрозионной обработки металлов по методам подвода энергии и указаны известные в промышленности разновидности, отнесенные к тому или иному способу но принципу сходства наибольшего числа признаков. Наибольшее число разновидностей получается при совмещении источников импульсного тока, необходимых при подводе энергии через канал разряда, с относительным движением электродов, применяемым при комбинированном подводе энергии. К этим разновидностям относятся так называемая низковольтная электроискровая
и
электроимпульсная
обработка тел вращения или обработка вращающимся электродом,
анодно-механическая
обработка с импульсным питанием и т. п. В зависимости от того, признаки какого из способов превалируют в данной комбинации, можно говорить, например, об
электроконтактной
обработке с импульсным питанием или об
электроимпульсной
обработке с вращающимся электродом. То же относится и к другим комбинациям четырех основных способов электроэрозионной обработки.
Рассмотрим принципиальные отличия разновидностей размерной электроэрозионной обработки внутри второй и третьей групп.
Электроискровой
и
электроимпульсный
способы отличаются, как ниже будет показано подробнее, устройством для генерирования импульсов, параметрами и формой импульса, а также полярностью электродов.
Диодно-механический
и
электроконтактный
способы отличаются по роду применяемого тока (в первом случае — постоянный, во втором — переменный, и, реже — постоянный) и по виду рабочей среды (в первом случае — жидкое стекло, во втором — воздух, вода, масло и др.)
Следствием этих отличий является, в общем, ухудшение технических характеристик электроконтактного
способа по сравнению с
анодно-механическим
(меньшая производительность при одинаковой чистоте поверхности, больший износ инструмента, ограниченная номенклатура обрабатываемых материалов), при более благоприятных условиях эксплуатации и большей простоте установки в целом. Это обусловливает и различные области их применения.
Как следует из изложенного, независимо от способа подвода энергии, известные электроэрозионные способы размерной обработки металлов имеют в основе единую физическую природу — металл удаляется в результате термического действия электрического тока.
Отличия заключаются в механизме удаления снятого металла и в технических средствах, обеспечивающих выполнение трех условий размерной электрообработки.
Сравнение удельных расходов энергии на съем металла различными способами показывает, что наибольший расход энергии имеет место при электрохимическом растворении (3,85 квт-ч/кг),
затем при плавлении (0,35
квт-ч/кг).
При механической обработке удельный расход энергии в значительной степени зависит от вида обработки. Так, при шлифовании он составляет, в среднем, 2 квт-ч/кг,
строгании, сверлении и фрезеровании 0,20-0,25
квт-ч/кг,
точении 0,045
квт-ч/кг.
При сопоставлении этих данных следует иметь в виду, что удельный расход энергии для электрохимического растворения и плавления практически не зависит от механических свойств обрабатываемых материалов, в то время, как при механической обработке увеличение, например, твердости обрабатываемого материала резко повышает удельный расход энергии. Необходимо, однако, отметить, что фактические удельные расходы в электроэрозионных и электрохимических установках значительно выше приведенных данных вследствие неизбежных потерь энергии при ее преобразовании и передаче.
Эти данные определяют с энергетической точки зрения целесообразность применения электрических методов для обработки токопроводящих материалов, трудно поддающихся механической обработке.
С учетом свойства отображения (копирования), осуществляемого на электроэрозионных станках по предельно простой кинематической схеме и без силового привода, и возможности выполнения ряда специальных операций, недоступных механической обработке, следует расширить целесообразную область применения электроэрозионных способов и на детали из обычных материалов, но обладающих сложной формой, затрудняющей их механическую обработку.
Рассмотрение методов подвода энергии электрического тока к инструменту и детали показывает, что для осуществления требуемого физического процесса съема металла необходимо специальное оборудование — станок или установка, включающие в себя следующие специфические элементы:
1) генератор импульсов;
2) автоматический регулятор;
3) систему снабжения рабочей жидкостью (ванна, устройство для работы с поливом, насосная станция и т. п., в зависимости от типа и назначения станка).
ЭЛЕКТРОТЕХНОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Электоротехнологические характеристики электроэрозион-ных способов обработки позволяют определить по заданным площади, конфигурации и материалу обрабатываемой детали, какие электрические режимы и в какой последовательности их необходимо применить для того, чтобы получить деталь с заданными размерами и чистотой поверхности и каково будет при этом машинное время обработки. Электротехнологические характеристики в электрической обработке аналогичны режимам резания в механической обработке металлов.
Мы остановимся здесь только на основных принципиальных электротехнологических характеристиках и методах их определения. Во избежание повторения известных из литературы сведении, изложим только новые направления в этом вопросе применительно к электроимпульсной
обработке, хотя методика и качественная сторона являются справедливыми для других разновидностей электроэрозионной обработки. Методика подхода к решению технологической задачи обработки детали электрическим способом весьма важна, так как в промышленности еще не накоплен достаточный опыт в создании электротехнологии. Для того же, чтобы этот опыт мог быть широко использован, необходим единый методический подxод.
ХАРАКТЕРИСТИКИ И ОБЛАСТИ ПРИМЕНЕНИЯ РАЗМЕРНОЙ ЭЛЕКТРОЭРОЗИОННОЙ ОБРАБОТКИ
Рассмотрим основные технологические характеристики и области преимущественного применения разновидностей электроэрозионной обработки металлов.
Приводимые данные по производительности, чистоте поверхности и энергоемкости относятся к обработке различных по величине площадей на режимах, обусловливающих отсутствие участков оплавления и покрытия, т. е. при оптимальных плотностях токов.
Электроискровой способ
. Скорость
съема
металла на максимальных режимах при обработке стали составляет в среднем 600
мм3/мин
и близка к предельно возможной для этого способа обработки металлов. Удельный расход энергии на жестких режимах составляет 20-50
квт-ч/кг
диспергированного металла. Износ инструмента по отношению к объему снятого металла достигает 25-120 и более процентов. Чистота поверхности на мягких режимах достигает 4-го класса
(Нср
= 25-30
мк)
при скорости съема 10-15
мм3/мин.
Дальнейшее повышение чистоты поверхности сопровождается резким уменьшением скорости съема. Так, при получении 5-го класса чистоты поверхности
(Нср
= 16-19
мк),
производительность электроискрового способа обработки меньше 5
мм3/мин.
Удельный расход энергии на мягких режимах в десятки и сотни раз выше, чем на жестких.
При обработке твердого сплава производительность процесса на мягких режимах, примерно, в два-три раза меньше, чем при обработке стали, однако при этом получается несколько лучшая чистота поверхности. Применение более жестких режимов при обработке твердых сплавов лимитируется образованием на них трещин.
Электроискровой
способ преимущественно применяется в настоящее время для прошивочных работ, изготовления полостей сложной конфигурации и т. п. операций, а также для шлифования тел вращения.
Электроимпульсный способ
. Ряд характеристик этого способа изложен выше.
Электроимпульсная
обработка имеет значительные преимущества по сравнению с
электроискровой
. Улучшение технологических характеристик нового способа обработки обусловлено применением специальных независимых генераторов импульсов. Сообщаемые ниже технологические характеристики способа отражают итоги первых работ и далеко не полностью характеризуют возможности
электроимпульсного
способа.
Производительность на жестких режимах электроимпульсного
прошивочно-копировального станка КБ МСиИП с ламповым генератором импульсов превышает 5000
мм3/ мин
при получении чистоты поверхности вне класса. Указанная производительность может быть повышена на соответствующей площади до нескольких десятков кубических сантиметров в минуту при увеличении импульсной мощности. Энергоемкость на жестких режимах составляет 8-12
квт-ч/кг
диспергированного металла, относительный износ инструмента достигает
0,2 — 20%.
Чистота поверхности, получаемая на указанном станке на мягких режимах, соответствует 4-му классу (
Нср
= 25-30 мк) при производительности: по стали 6-8
мм3/мин,
по твердому сплаву, примерно, в 2-3 раза меньше. Дальнейшее снижение режима обработки для получения большей чистоты поверхности приводит к еще большему падению производительности и увеличивает энергоемкость. Приведенные технологические характеристики мягких режимов в настоящее время значительно улучшены путем применения новых моделей машинных генераторов импульсов, разработанных Харьковским политехническим институтом имени Ленина, ЭНИМС и КБ МСиИП, но все же проблему резкого повышения производительности процесса обработки на мягких режимах нельзя с