Радиографический контроль сварных швов и технология его проведения

Сварка – один из наиболее часто используемых методов соединения металлов и сплавов. Даже мастера иногда допускают дефекты шва, не говоря уже о новичках. При проведении таких работ в домашних условиях достаточно визуального контроля. На производствах для контроля качества сварного шва используются разные методы, и одним из передовых является радиографический контроль.

Краткое описание метода

Металлические детали соединяются с применением разных видов сварки, при этом могут образовываться дефекты сварных швов.

Это связано с:

  • нарушением технологии выполнения работ;
  • попаданием в место сварки инородных тел;
  • недостаточной квалификацией сварщика и т.д.

Все это приводит к ухудшению качества шва и уменьшению его прочности.

Рентгенографический контроль (РК) сварных соединений – неразрушающий метод, позволяющий выявлять скрытые дефекты на ранней стадии, избегать аварийных ситуаций в будущем.

Это высокоточный способ, при помощи которого можно объективно оценить как характер, так и размер дефектов. Методика позволяет контролировать состояние сварочных швов на трубопроводах, резервуарах, разном оборудовании и металлоконструкциях и т.д.

Расшифровка

Расшифровку рентгенограмм осуществляют в затененном помещении на негатоскопе. Он представляет собой устройство, назначением которого является просмотр на просвет радиографических снимков, в том числе рентгенограмм. В негатоскопе предусмотрена возможность регулировки яркости освещения. При слишком большом его значении мелкие дефекты могут быть пропущены.

После расшифровки составляется заключение. Перед тем, как прибегнуть к этому методу, необходимо узнать, какие дефекты сварного шва выявляются с помощью радиографического контроля. К ним относятся:

  • подрезы;
  • непровары;
  • трещины;
  • поры;
  • инородные включения;
  • шлаки.

Помимо этого, можно оценить величину вогнутости и выпуклости в местах, где визуальный осмотр невозможен. При записи результатов используются сокращения. Так, «Т» означает трещину, «Н» — непровар, «П» — пору, «Ш» — шлак, «В» — включение вольфрама, Пдр» — подрез. Рядом с буквами ставят размеры дефекта. Учитывается также характер распределения.

По этому признаку недостатки делятся на группы:

  1. Отдельные.
  2. Цепочки. На одной линии более трех дефектов.
  3. Скопления. Расположение в одном месте не менее трех дефектов.

Размер дефекта обозначается в миллиметрах.

ГОСТ и иные требования

Проведение радиографического метода контроля сварных соединений регламентируется ГОСТ 7512-82. Такой метод позволяет контролировать сварной шов при толщине свариваемых элементов от 1 до 400 мм, а при использовании мощного оборудования – и до 500 мм.

Для этого применяются рентгеновское, тормозное и гамма-излучение, а для получения снимка – радиографическая пленка.

Основные требования к принадлежностям для проведения такого контроля следующие:

  1. Маркировочные знаки соответствуют ГОСТ 15843-79.
  2. Радиографические пленки отвечают техническим условиям.
  3. Источник излучения соответствует ГОСТ 20426-82.
  4. Усиливающие экраны могут быть металлическими и флюоресцирующими.
  5. Светонепроницаемые кассеты обеспечивают плотный прижим экрана к пленке.
  6. Свинцовый экран защищает пленку от рассеянного излучения.
  7. Эталоны чувствительности могут быть пластинчатыми, проволочными или канавочными.

Стоимость оказываемой услуги

При использовании радиографии важную роль играет понимание ценообразования в этой области. Удельная величина расходов на контрольные функции с использованием радиационного излучения зависит от многих факторов, связанных с грамотным распределением рабочего времени, использованием приборов и специальных средств.

Как правило, выполнение таких работ собственными силами нецелесообразно по причине высокой стоимости начальных затрат на приобретение оборудования и материалов, обучение персонала, получение требуемых разрешительных документов.

В силу указанных причин чаще всего процессы, связанные с радиографическим контролем поручают специализированным организациям, имеющим в распоряжении:

  • Сертифицированное оборудование и материалы;
  • Опыт организации работ с минимальным уровнем производственных и временных затрат;
  • Подтверждающие документы и сведения об уровне технической оснащённости и компетенций;
  • Квалифицированный опытный персонал в достаточном количестве.

Прейскурант цен на работы по неразрушающему контролю сварных соединений рентгенографическим методом

Окончательная цена рентгенографического контроля сварных соединений зависит от количества элементов требующих контроля, временных рамок и других факторов, которые могут затруднять обследование.

Свойства и возможности рентгена

Особенность рентгенографии в том, что проходимость материалов зависит от длины генерируемых лучей. В плотных материалах они рассеиваются и частично поглощаются. Чем ниже плотность проверяемого соединения, тем четче получится изображение.

Возможность некоторых химических элементов на протяжении нескольких секунд светиться под действием рентгеновского излучения позволяет засвечивать специальную пленку и получать изображение имеющихся дефектов шва.

Если исследуемый материала однородный, результат получится в виде светлого и однотонного изображения. При наличии разных дефектов, раковин, пустот оно будет иметь затемнения.

В работе некоторых моделей дефектоскопов используется способность ионизированного воздуха пропускать электричество. Чем выше степень ионизации, тем лучше проводится ток. Этот принцип позволяет при проведении РК получать изображение не на пленке, а на экране осциллографа.

В большом количестве рентгеновское излучение негативно влияет на организм человека, при этом происходит облучение клеток и тканей. Большие дозы приводят к развитию лучевой болезни и даже смерти. Поэтому применение рентгеноскопии для контроля качества сварочных швов требует строгого соблюдения правил безопасности.

Требования к аппаратам

Рентгеноконтроль сварочных швов зависит от нескольких факторов:

  • интенсивности пропускаемого потока, чтобы с учетом рассеивания получалось четкое изображение;
  • генератор должен работать с одинаковой мощностью на протяжении исследования, только при этом условии показания будут достоверными;
  • требуется высокая чувствительность элемента, улавливающего световой сигнал, иначе картинка будет смазанной;
  • способность прибора улавливать дефекты определяется минимальными размерами распознаваемого объекта, от размера пустот или включений напрямую зависит прочность сварного соединения.

Область применения дефектоскопии

Рентгеновский метод проверки сварных соединений позволяет с высокой точностью определять такие параметры имеющихся дефектов, как размер, форма и расположение в пространстве.

Он позволяет контролировать качество сварных швов на ответственных объектах, таких как магистральные нефте-, газо-, водопроводы, при строительстве конструкций и оборудования для атомных станций, в машино-, авиа-, судостроении и т.д.

История создания и внедрения методики

Изначально посредством радиационной дефектоскопии оценивали качество швов на металлоконструкциях, использовавшихся в авиации. Со временем ученые и практики накопили достаточно знаний, чтобы в 1934 г. выпустить первое пособие, в котором детально описали технологию просвечивания участков электродуговой сварки рентгеновскими лучами. В середине XX в. благодаря значительному расширению опытно-конструкторской и научно-исследовательской баз производство рентген-установок удалось поставить на поток.

К началу 1960-х гг. для контроля качества сварных соединений по данной технологии выпускались типовые установки. Это были преимущественно РУП-устройства, разработкой которых занимался . Преимуществами этих аппаратов:

  • Диапазон энергии рентгеновского облучения от 50 до 400 кВ,
  • точная фокусировка рентгеновских трубок,
  • жесткость облучения,
  • мощность.

На развитие и усовершенствование технологии повлиял советский ученый Трапезников А. К., а также его последователи – Борщев Б. В., Назаров С. Т., Сильченко О. Т., Чернобровов С. В.

Дополнительные сведения

Перед тем как использовать радиографический метод контроля качества, надо знать, что его диагностический диапазон ограничен чувствительностью прибора.

При помощи дефектоскопа нельзя выявить:

  • пустоты, которые на 50% меньше стандартных значений для указанного прибора и размещены в направлении, параллельном действию рентгеновского луча;
  • включения, расположенные в направлении действия луча, размер которых в 2 раза меньше чувствительности прибора;
  • дефекты, которые на снимке совпадают с гранями и острыми углами проверяемых элементов.

Рекомендуем к прочтению Как используется ультразвуковая дефектоскопия

Все остальные дефекты этот метод выявляет быстро, эффективно и с высокой точностью.

Когда не используют рентгенографические методики

Метод радиографического контроля сварных швов не используется в нескольких случаях:

  • Если на соединении есть трещины и непровары с величиной раскрытия ниже стандартных значений. При этом также есть несоответствие плоскости раскрытия направлению просвечивания.
  • При включениях и несплошностях, имеющих размер в направлении просвечивания менее удвоенной чувствительности контроля.
  • При включениях и несплошностях, когда их проекция на снимке абсолютно не соответствует изображению построенных деталей.
  • При резких перепадах трещин металла.

Самый точный способ контроля металлоконструкций и сварных соединений – это дефектоскопия с рентгеновским просвечиванием. Она помогает определить характер, виды, местоположение дефектов.

Конструкционные особенности оборудования

Сейчас чаще используется радиографический контроль, относящийся к цифровой дефектоскопии. Полученное радиационное изображение превращают в цифровое, и информацию выводят на экран.

Детектором контроля рентгеновского излучения или гамма-излучения, которые проходят через проверяемый объект, является фотодиод со сцинтиллятором, который поддается действию излучения, испускает видимый спектр света, находящийся в прямой пропорциональности квантовой энергии.

Такое излучение вырабатывает внутри фотодиода ток, радиационное излучение превращается в электрическое и затем выводится на экран.

Детекторные блоки перемещают относительно проверяемого объекта и получают непрерывный поток информации, который записывается в память компьютера для проведения его дальнейшей детальной проверки. Чтобы можно было оперативно оценить качество соединения, полученное изображение сразу выводят на экран.

Дефектоскопы на гамма-лучах

Они обеспечивают заданную частоту флуктуаций интенсивности гамма-излучения. В результате перемены интенсивности излучения на изображении создаются поперечные полосы.

Существующие отклонения интенсивности излучения выше значения статистических шумов. Современная техника, оснащенная передовым программным обеспечением, позволяет уменьшать данные флуктуации. Такие рентгеновские аппараты являются условно применимыми для выполнения РК сварных швов.

Рентгеновское устройство

Эти аппараты имеют постоянный потенциал и высокочастотные флуктуации, случайные во времени. Они обеспечивают отклонение интенсивности гамма-излучения более 1 %. В связи с этим применять указанные аппараты при выполнении радиометрического контроля не рекомендуется.

Для рентгеновского контроля надо использовать оборудование, имеющее следующие показатели:

  • стабильность излучения – более 0,5%;
  • частоту флуктуаций – не выше 0,1 Гц.

Оборудование и инструменты для выполнения рентген контроля сварных швов

Для проведения данного метода контроля используется излучающий элемент в специальной емкости. Такие устройства выпускаются в импульсном режиме и с постоянным напряжением на аноде.

Импульсные рентген аппараты

Более современными являются импульсные аппараты. Они имеют маленький вес, просто регулируются, однако качество фотографий немного ниже, чем на аппаратах с постоянным напряжением на аноде. Существует возможность съемки не только в прямом направлении, а в панорамном режиме.

Рентген аппараты с постоянным потенциалом

Выбор такого вида устройств, представлен на рынке шире, чем импульсные аппараты. Устройство имеет постоянное напряжение на рентгеновской трубке. Снимки с него получаются более качественные с высоким разрешением, так как имеется возможность регулирования напряжения для заданной толщины. Выпускаются или в прямым направлением съемки, или с панорамным, в зависимости от назначения.

Принцип работы установок для радиографического контроля

Основной деталью прибора, используемого для проведения рентгенографического контроля состояния шва, является излучатель. Он служит для создания лучей и их излучения.

Выполнен излучатель в виде вакуумного сосуда, в котором находятся анод, катод и накал. Во время ускорения, которое развивают заряженные частицы, образуются рентгеновские лучи, просвечивающие исследуемое изделие.

Электрический потенциал, образовавшийся между катодом и анодом, ускоряет выпускаемые катодом электроны. Этих начальных лучей для работы прибора пока мало.

При столкновении с анодом происходит торможение лучей, что приводит к более сильному их генерированию. Столкновение их с анодом приводит к образованию на нем электронов. В результате формируются лучи, образуется достаточное излучение.

Появившиеся лучи движутся в направлении места проведения контроля качества. Там, где плотный металл, они практически полностью поглощаются, а в местах дефектов проходят дальше.

Прошедшие лучи на пленке формируют изображение, контрастность которого зависит от количества прошедших через шов лучей. Чем больше будет дефектов, тем четче получается это место на снимке. Таким образом определяют их расположение и размер.

Какие требования выдвигаются

При выполнении радиографического контроля можно применять любые существующие рентгеновские аппараты. Изготовители редко указывают в характеристиках данные о флуктуации интенсивности излучений устройства, т.к. эта величина не является критичной.

Т. к. радиометрия обеспечивает сбор информации в онлайн-режиме, к применяемым рентген-аппаратам предъявляют такие требования:

  1. Плотность гамма-потока, проходящего через исследуемый объект, должна быть достаточной для того, чтобы хватило времени зарегистрировать толщину детали вдоль сканируемой области.
  2. Интенсивность гамма-излучения должна быть постоянной.

Чтобы обеспечить качественный радиометрический контроль, используют высокостабильный источник излучения, гарантирующий максимальную плотность потока лучей и энергетический спектр.

Безопасность в работе

Хотя оборудование, применяемое для проведения радиографического контроля, излучает небольшие дозы излучения, не стоит пренебрегать правилами безопасности:

  1. Прибор должен быть экранирован, чтобы не выпустить лучи за пределы зоны, в которой проводится контроль. В стенах помещения, в котором выполняется такое исследование, должны быть установлены экраны, чтобы излучение не распространялось на людей, работающих в соседних цехах.
  2. Возле работающего аппарата надо проводить минимум времени. Если проверка качества шва выполняется на улице, то лучше отойти от него. Ели прибор находится в помещении, то во время его работы находиться рядом с ним надо минимум времени.
  3. Оператор радиографического оборудования должен надевать средства индивидуальной защиты. Во время работы оборудования рядом не должно быть посторонних людей.
  4. Перед использованием прибора нужно проверить его работоспособность и правильность выставленных настроек. Чаще всего аварийные ситуации происходят из-за неверных настроек или неисправности оборудования.
  5. Надо контролировать, чтобы полученное облучение успевало выводиться из организма. Определить дозу излучения можно при помощи дозиметра. Полученные небольшие дозы радиации имеют накопительный эффект.
  6. Особенно важно контролировать уровень ионизации воздуха в закрытой лаборатории. Радиационное излучение приводит к ионизации воздуха, в результате чего образуется электричество.

Рекомендуем к прочтению Как самому сделать буржуйку для гаража

Обозначение дефектов

Недопустимым является наличие в сварочном шве следующих дефектов:

  1. Трещин (холодных и горячих). До того как затвердеет шов, могут появляться горячие трещины, а после его полного застывания – холодные. Часто они незаметны при внешнем осмотре шва.
  2. Пор. Указанный дефект является самым распространенным при проведении сварочных работ. В большинстве случаев его появление связано с неправильно или недостаточно хорошо подготовленными соединяемыми поверхностями, наличием сквозняков и др.
  3. Шлаков и других инородных тел.
  4. Прожога. Он возникает при недостаточной квалификации сварщика или неправильно выбранных параметрах оборудования. Проявляется в виде сквозных отверстий в шве.
  5. Подреза. Дефект в виде канавки, расположенной в свариваемой детали вдоль сварочного шва.
  6. Наплыва. В процессе работы на основной металл натекает присадочный материал, но при этом не образует с ним надежного сплавления.
  7. Непровара. Неправильно выбранный режим проведения работ, т. е. низкий ток, не позволяет полностью и качественно проварить соединяемые детали.
  8. Рыхлых участков. Они характеризуются непрочной структурой шва.

Требования к снимкам и особенности их расшифровки:

  1. Расшифровывают только хорошо высушенные снимки. На них не должно быть царапин, отпечатков пальцев и т.д.
  2. Расшифровку выполняют в затемненной комнате на негатоскопах.
  3. Полученные результаты записывают в специальный журнал, а заключение направляют в отдел технического контроля.

Дефекты в сварке аргоном TIG

Следующие неоднородности являются уникальными для процесса сварки аргоном TIG. Эти разрывы имеют место в большинстве металлов, сваренных в процессе, включая алюминий и нержавеющую сталь. Метод сварки аргоном позволяет получить чистый однородный сварной шов, который при рентгенографии легко интерпретируется.

Вольфрамовые включения

Вольфрамовые включения

Вольфрам является хрупким и по своей природе плотным материалом, используемым в электроде при сварке вольфрамовым инертным газом. Если используются неправильные процедуры сварки, вольфрам может попасть в сварной шов.

На рентгеновском снимке сварного шва вольфрам более плотный, чем алюминий или сталь, поэтому он выглядит как более светлая область с четким контуром на рентгенограмме.


Оксидные включения

Оксидные включения

обычно видны на поверхности свариваемого материала (особенно алюминия). Оксидные включения менее плотны, чем окружающий материал и поэтому на рентгенограмме выглядят как темные неоднородности неправильной формы

.

Преимущества и недостатки метода

Указанный метод контроля качества сварочных швов имеет высокую эффективность, т.к. обладает следующими преимуществами:

  1. Для получения представления о состоянии шва, выполненного любым методом сварки, достаточно всего нескольких секунд.
  2. РК имеет более высокую точность по сравнению с другими методами неразрушающего контроля.
  3. РК выявляет широкий спектр дефектов.
  4. Рентгенография показывает не только место расположения дефекта, но и его размер, тип.
  5. Способ можно применять в полевых условиях, что удобно при контроле трубопроводов или обследовании строительных объектов.

Есть у радиографического метода контроля и свои недостатки:

  1. Для проведения рентгенографии требуется специальное оборудование, а его стоимость высока.
  2. Необходимо использовать одноразовые расходные материалы: пленку или пластины, а также реагенты, экраны и т.д.
  3. Для выполнения работ оператор должен обязательно пройти обучение и сдать экзамены.
  4. Чтобы получить достоверный результат, требуется правильно настроить оборудование.
  5. Излучение прибора опасно для здоровья.

Безопасность

При всех своих достоинствах метод является потенциально опасным для здоровья. Поэтому необходимо выполнять экранирование прибора. Контролер не должен находиться без необходимости в зоне облучения. Доступ туда посторонним лицам должен быть запрещен. Для этого следует вывесить предупреждающие знаки.

При работе в помещении его стены надо покрыть экранирующими пластинами. Контролер должен быть обеспечен комплектом защитной одежды. Перед началом процесса необходимо проверить исправность оборудования.

Технология рентгеновского контроля

Перед тем как применить указанную технологию, обязательно выполняют очистку поверхности. Качество настроек сильно влияет на точность полученных результатов.

Последовательность радиографического контроля:

  1. Установка прибора. С одной стороны проверяемой зоны должен находиться излучатель, а с другой – датчик дефектоскопа.
  2. Включение прибора. В это время пучок лучей проходит через шов и поступает на датчик. Работать оборудование может от аккумулятора или от сети.
  3. Передача датчиком полученного сигнала на пленку или на экран. Это зависит от модели используемого аппарата.
  4. Запись цифрового аналогового сигнала в накопитель.
  5. Расшифровка полученной информации и фиксация имеющихся дефектов в соответствующей документации.

Для сварных швов

Для классических швов процедура контроля их качества при помощи рентгеновского контроля включает в себя следующие этапы:

  • удаление с исследуемого шва шлака, окалины, любых загрязнений;
  • разметку и маркировку стык (на каждый устанавливают маркировочный знак и эталон чувствительности);
  • выбор схемы проведения работ;
  • настройку параметров контроля;
  • непосредственное просвечивание;
  • обработку пленок;
  • расшифровку результатов;
  • запись полученной информации в документацию.

Для трубопроводов

Такой метод активно используется для контроля швов труб разного диаметра. Часто необходимо проводить исследование вдали от населенных пунктов, куда невозможно доставить установку.

В этом случае используют компактные приборы – кроулеры. Они самостоятельно движутся внутри трубы и управляются дистанционно. Приборы рассчитаны на работу в трубах, диаметр которых больше 325 мм.

Неважно, где находится исследуемый объект – над, под землей или под водой. Не имеют значения и климатические условия, поэтому он может использоваться в любом регионе и в любое время года.

По команде прибор останавливается и делает рентгенограммы или панорамные снимки.

Рекомендуем к прочтению Как сваривать трубы отопления электросваркой

Для резервуаров

Во время приемки резервуаров сначала проводят визуальный контроль сварных соединений и только потом радиографический. На пересечении швов обязательно располагают пленки в Х- или Т-образном направлении.

Длина изображения должна быть не меньше 240 мм, а ширина – соответствовать стандартной. Проверяют стыковые швы на стенках резервуара, днище, а также в местах их сопряжения.

При обнаружении недопустимых дефектов в этом месте делают дополнительный снимок. Для проверки швов на резервуарах применяют дефектоскопы не ниже 4-го разряда, а расшифровку результатов производят специалисты не ниже II уровня.

Для разных видов соединений

Радиографический контроль разных видов сварных швов выполняется в соответствии с ГОСТ 7512, ОСТ 26-11-03, ОСТ 26-11-10. Перед проведением работ учитывают особенности металла и проверяемого шва. Угловые швы проверяют согласно ГОСТ 26-2079.

При помощи этого метода контролируют качество угловых, тавровых и стыковых соединений, места пересечения швов и т.д.

По видам металлов

При помощи рентгеновского просвечивания можно проверять качество сварных швов и основного изделия из разных металлов. Настройки аппаратуры будут разными, т.к. проходимость лучей через разные материалы отличается.

От правильности настроек зависит качество контроля.

Современное оборудование позволяет не только выявлять вид, размер и местонахождение дефектов, но и расшифровывать полученные результаты в автоматическом режиме.

Важные моменты

В любом случае на конечные результаты проводимых замеров влияют несколько основных факторов.

  • Стабильность характеристик подаваемого напряжения.
  • Точные геометрические параметры контроля.
  • Регулировка размеров фокусного пятна.
  • Фокусное расстояние между дефектоскопируемым объектом и преобразователем излучения.

Согласно требованиям ГОСТ 7512-86, распространяющим своё действие на методы РК контроля, для каждого обследуемого изделия должна быть разработана технологическая карта. Это важно, поскольку свою эффективность рентгеновский контроль демонстрирует только при полном соблюдении всех нормативов.

Использование беспленочных аппаратов

Сейчас все чаще вместо детекторов, в которых используется пленка, применяют аппараты, где излучение сразу перерабатывается в цифровую форму и выводится на экран.

«Беспленочная» радиография делится на такие виды:

  1. Цифровая. Рентгеновские лучи преобразуются в электрический ток, величина которого зависит от силы излучения. Сначала лучи попадают на слой сцинтиллятора, где превращается в световые фотоны. Они проникают на расположенную сзади фотоэлектрическую матрицу и активируют в ней заряд, который считывается и появляется в виде изображения на экране.
  2. Компьютерная. Здесь используется механизм фотостимулированной люминесценции. Часть кристаллов запасает поглощенную энергию, а после оптической или термической стимуляции запасенная энергия начинает светиться. Чаще всего в качестве люминофора используется фторбромид бария. Чем больше энергии попадет на запоминающую пластину, тем больше видимого света будет на изображении. Для получения нового изображения оставшееся на экране свечение стирают при помощи мощного пучка света, и оборудование можно снова использовать.

Преимущества «беспленочной» радиографии:

  • необходимость проводить «мокрую» обработку полученных снимков;
  • меньшее время экспозиции;
  • возможность исследования деталей с различной радиационной толщиной.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]