Изначально технология литья чугуна была впервые освоена в Китае еще в Х веке, после чего нашла широкое распространение в других странах мира. Основа чугуна – это сплав железа с углеродом и другими компонентами. Отличительной особенностью является то, что в своем составе чугун содержит более 2 % углерода в виде цементита, чего нет в других металлах. Ярким представителем такого сплава можно назвать белый чугун, который используется в машиностроении для изготовления деталей, в промышленности и в быту.
Состав и виды
Углерод в составе белого чугуна образует цементитную структуру. В зависимости от его содержания, различают сплавы:
Классификация по кристаллической структуре дает следующие виды:
В качестве легирующих элементов используются карбидообразующие элементы:
При введении в доэвтектическую структуру этих элементов повышаются прочность и устойчивость аустенита и ледебурита. Степень легированности и физико-механические свойства зависят также от размеров отливок и условий охлаждения.
Особенности получения
При получении белого чугуна важно во время кристаллизации расплава исключить процесс графитизации, что делается:
Степень износостойкости отливок в большей мере определяется природой и составом карбидов. Легирование металла никелем, марганцем и хромом дает мартенситно-карбидную структуру. При их суммарной концентрации, равной содержанию углерода, образуется максимально твердая структура.
Чаще всего в качестве главной легирующей добавки используется хром. Он придает сплаву высокую коррозионную устойчивость, которая сохраняется даже в агрессивных средах. После нормализации эти заготовки устойчивы к действию кислот при температуре до 1000 градусов. Дополнительное легирование никелем (0,1%), титаном (0,5%) и медью (0,5-2,0%) придает деталям способность сохранять геометрическую форму и первоначальные размеры в условиях длительного нагрева.
Изделия из высокохромистого белого чугуна, который называют сормайт, способны работать при температурах 800-900 градусов. В его составе:
Предварительно заготовки подвергают обжигу для снятия внутренних напряжений. В процессе отжига температура медленно повышается до 850 градусов, после чего следует постепенное охлаждение. Полученные детали характеризуются:
Механические свойства
Благодаря тому, что белый чугун содержит углерод в виде карбидов, он демонстрирует хорошие прочностные характеристики:
Сплавы с пониженным содержанием углерода более устойчивы к интенсивному тепловому воздействию. Эту особенность используют для уменьшения числа трещин в металле. При легировании никелем, хромом, ванадием образуется жаропрочный сплав, обладающий высокой износоустойчивостью.
Особенности состава определяют отрицательные свойства белого чугуна:
Материал очень плохо поддается сварке даже при нагреве – в месте шва образуются микротрещины, которые при остывании еще больше увеличиваются.
Расшифровка маркировки
Сплав маркируется буквенно-цифровым кодом, который указывает на его основные свойства и легирующие добавки:
Расшифровка марки белого чугуна ЧН20Д2ХШ дает следующую информацию – это высоколегированный жаропрочный материал, наряду с железом и углеродом содержащий:
Марки Х28, Х34 представляют нержавеющий чугун с высоким удельным электросопротивлением.
Область применения
Высокие прочностные характеристики сплава и способность сохранять заданную форму при тепловом воздействии нашли применение:
Высокая твердость в сочетании с хрупкостью затрудняет механическую обработку методами резания или фрезерования и требует применения инструментов из специальных марок сталей. Поэтому в качестве конструкционного материала применение белого чугуна ограничено. Специальные передельные виды с пониженным содержанием кремния используют для выплавки стали и в литейном производстве.
Половинчатые или отбеленные разновидности содержат углерод в виде карбидов и в свободном состоянии. Они обладают высокой износоустойчивостью и применяются для изготовления фрикционных механизмов, подвергающихся сухому трению:
Для некоторых изделий требуется высокая поверхностная твердость структуры цементита. Ее создают искусственно путем быстрого охлаждения заготовки до глубины 5 мм. Эта операция называется отбеливанием. Она необходима:
Получение ковкого чугуна
Белый чугун служит сырьем для получения других видов металлургической продукции. Его используют для производства ковкого чугуна с помощью термической обработки, во время которой происходит процесс графитизации и обезуглероживания заготовок. Соотношение в сырье исходных элементов составляет:
В нем присутствует структура ледебурита, представляющего механическую смесь цементита и перлита. Заготовки на специальных поддонах медленно пропускают через камеры с заданным температурным режимом. Скорость движения рассчитывается таким образом, чтобы металл подвергался тепловому воздействию в течение определенного времени.
Отжиг проходит в несколько этапов с разными температурными режимами:
Время отжига можно сократить предварительной закалкой отливок и в дальнейшем применить более высокий температурный режим. Но при этом в структуре металла образуются напряжения и трещины. Поэтому метод используется ограниченно – только для небольших деталей простой формы.
Источник
Структура, свойства и применение чугунов
Белый чугун
. Структура белых чугунов представлена на диаграмме железо-цементит, в соответствии с которой белые чугуны делятся на: доэвтектические – содержащие углерода от 2,14 до 4,3%, эвтектические — С=4,3%, заэвтектические – С>4,3%. В белых чугунах весь углерод находится в форме цементита, т.е. степень графитизации равна нулю. Белый чугун обладает высокой твердостью, хрупкостью, практически не поддается обработке режущим инструментом, поэтому имеет ограниченное применение (для отливок, не требующих механической обработки и работающих в условиях абразивного износа при сухом трении). Его также используют как исходный материал для получения ковкого чугуна.
Серый чугун
. В чугуне весь углерод или частично присутствует в виде графита пластинчатой формы. В структуре чугуна различают металлическую основу и графитовые включения. По строению металлической основы серый чугун разделяют на ферритный; структура – феррит и графит. Феррито-перлитный: структура – феррит + перлит + графит. Перлитный; структура перлит + графит.
Механические свойства серых чугунов зависят как от свойств металлической основы, а так же количества и характера графитовых включений. Чугуны разделяются на марки в зависимости от значений механических свойств. Чугун маркируется буквами СЧ (серый чугун) и числом, показывающим минимальную величину временного сопротивления при растяжении в МПа·10-1. Например чугуны марок СЧ10 и СЧ35 имеют временное сопротивление при растяжении не менее 100 и 350 МПа соответственно. Применение серых чугунов определяется их механическими свойствами.
Ферритные и феррито-перлитные чугуны СЧ10…СЧ15 используют для строительных колон, фундаментных плит, малонагруженных деталей сельхозмашин и т.д.
Перлитные чугуны (СЧ18…) применяют для изготовления отливок, например станины станков, блоки двигателей, цилиндры, компрессорное и арматурное литье, для металлургического оборудования и др. Чугуны марок СЧ30, СЧ35, СЧ40, СЧ45 получают модифицированием (добавлением в жидкий чугун перед разливкой ферросилиция или силикокальция в количестве 0,3-0,8%) с целью уменьшения графитовых включений, которые обеспечивают получение более высоких значений прочности.
Для деталей работающих при повышенных температурах, применяют легированные серые чугуны: жаростойкие (дополнительно содержат Cr, Al), жаропрочные (Cr, Ni, Mo). Применяются также немагнитные хромоникелевые чугуны с аустенитной структурой.
Отливки из серого чугуна подвергают термической обработке. Используют низкий отжиг (5600С) для снятия внутренних напряжений и стабилизации размеров, нормализацию или закалку с отпуском для повышения механических свойств и износостойкости. Серые чугуны обладают лучшими по сравнению с другими чугунами, литейными свойствами, отливки из серого чугуна дешевле, чем из остальных чугунов и в 1,5 раза дешевле стальных. Серый чугун является самым распространенным литейным сплавом, из него получают 64% всех отливок по массе.
Высокопрочный чугун с шаровидным графитом
. Высокопрочный чугун получают присадкой в жидкий чугун (модифицированием) магния или церия в количестве 0,03-0,07%. По содержанию остальных элементов высокопрочный чугун не отличается от обычного серого чугуна. Под действием магния (или церия) графит в процессе кристаллизации принимает не пластинчатую, а шаровидную форму. Шаровидный графит значительно меньше ослабляет металлическую основу чугуна, чем пластинчатый, поэтому эти чугуны имеют более высокие механические свойства, не уступающие литой углеродистой стали, сохраняя при этом хорошие литейные свойства. Высокопрочные чугуны, как и серые, разделяются по строению металлической основы на ферритный, феррито-перлитный, перлитный.
Чугун маркируется буквами ВЧ (высокопрочный чугун) и числом, показывающим минимальную величину временного сопротивления при растяжении в МПа·10-1. Например, чугуны марок ВЧ35 и ВЧ100 имеют временное сопротивление при растяжении 350 и 1000МПа соответственно. Марки высок5опрочных чугунов согласно ГОСТ7293-85 от ВЧ35 до ВЧ100.
Отливки из высокопрочного чугуна используют в автостроении и дизелестроении (коленчатые валы, крышки цилиндров и др.) в тяжелом машиностроении (детали прокатных станов, траверсы прессов, прокатные валки и др.), химической и нефтяной промышленности (корпуса насосов и др.). Для повышения механических свойств высокопрочные чугуны подвергают специальной термической обработке, состоящей из нагрева до 9500С, охлаждения до 6000С и подогрева до 7250С с длительной выдержкой при этой температуре, обеспечивающей получение зернистого перлита.
Ковкий чугун
получают длительным нагревом при высоких температурах (отжигом) отливок из белого чугуна. В результате отжига образуется графит хлопьевидной формы. Такой графит по сравнению с пластинчатым меньше снижает прочность и пластичность металлической основы структуры чугуна. Кроме того, чугун имеет пониженное содержание углерода и кремния. Металлическая основа ковкого чугуна: феррит (ферритный ковкий чугун), феррит и перлит (феррито-перлитный ковкий чугун), перлит (перлитный ковкий чугун). Наибольшей пластичностью обладает ферритный ковкий чугун, который наиболее широко применяют в машиностроении.
Толщина сечения отливки из ковкого чугуна не должна превышать 40 мм. При большем размере отливок в сердцевине образуется пластинчатый графит и чугун становится непригодным для отжига. Продолжительность отжига составляет 70-80 часов. Для ускорения отжига применяют различные меры: чугун модифицируют алюминием, повышают температуру нагрева чугуна перед разливкой, повышают температуру графитизации.
Ковкий чугун маркируют буквами КЧ (ковкий чугун) и цифрами. Первые две цифры указывают минимальную величину временного сопротивления при растяжении в МПа·10-1, вторые – относительное удлинение в процентах. Например, чугун марки КЧ30-6 имеет временное сопротивление разрыву 300 МПа (не менее) и относительное удлинение 6% (не менее). Некоторые марки ковких чугунов по ГОСТ 1215-79 – КЧ 30-6; КЧ35-10, КЧ60-3, КЧ80-1,5 и др.
Из отливок ковкого чугуна изготавливают детали, работающие при ударных и вибрационных нагрузках (картеры редукторов, ступицы, крюки, вилки карданных валов, муфты, тормозные колодки и др.). Для повышения твердости, износостойкости и прочности ковкого чугуна применяют нормализацию с 800-8500С или закалку с 850-9000С и отпуск при 450-7000С.
Белый чугун
. Структура белых чугунов представлена на диаграмме железо-цементит, в соответствии с которой белые чугуны делятся на: доэвтектические – содержащие углерода от 2,14 до 4,3%, эвтектические — С=4,3%, заэвтектические – С>4,3%. В белых чугунах весь углерод находится в форме цементита, т.е. степень графитизации равна нулю. Белый чугун обладает высокой твердостью, хрупкостью, практически не поддается обработке режущим инструментом, поэтому имеет ограниченное применение (для отливок, не требующих механической обработки и работающих в условиях абразивного износа при сухом трении). Его также используют как исходный материал для получения ковкого чугуна.
Серый чугун
. В чугуне весь углерод или частично присутствует в виде графита пластинчатой формы. В структуре чугуна различают металлическую основу и графитовые включения. По строению металлической основы серый чугун разделяют на ферритный; структура – феррит и графит. Феррито-перлитный: структура – феррит + перлит + графит. Перлитный; структура перлит + графит.
Механические свойства серых чугунов зависят как от свойств металлической основы, а так же количества и характера графитовых включений. Чугуны разделяются на марки в зависимости от значений механических свойств. Чугун маркируется буквами СЧ (серый чугун) и числом, показывающим минимальную величину временного сопротивления при растяжении в МПа·10-1. Например чугуны марок СЧ10 и СЧ35 имеют временное сопротивление при растяжении не менее 100 и 350 МПа соответственно. Применение серых чугунов определяется их механическими свойствами.
Ферритные и феррито-перлитные чугуны СЧ10…СЧ15 используют для строительных колон, фундаментных плит, малонагруженных деталей сельхозмашин и т.д.
Перлитные чугуны (СЧ18…) применяют для изготовления отливок, например станины станков, блоки двигателей, цилиндры, компрессорное и арматурное литье, для металлургического оборудования и др. Чугуны марок СЧ30, СЧ35, СЧ40, СЧ45 получают модифицированием (добавлением в жидкий чугун перед разливкой ферросилиция или силикокальция в количестве 0,3-0,8%) с целью уменьшения графитовых включений, которые обеспечивают получение более высоких значений прочности.
Для деталей работающих при повышенных температурах, применяют легированные серые чугуны: жаростойкие (дополнительно содержат Cr, Al), жаропрочные (Cr, Ni, Mo). Применяются также немагнитные хромоникелевые чугуны с аустенитной структурой.
Отливки из серого чугуна подвергают термической обработке. Используют низкий отжиг (5600С) для снятия внутренних напряжений и стабилизации размеров, нормализацию или закалку с отпуском для повышения механических свойств и износостойкости. Серые чугуны обладают лучшими по сравнению с другими чугунами, литейными свойствами, отливки из серого чугуна дешевле, чем из остальных чугунов и в 1,5 раза дешевле стальных. Серый чугун является самым распространенным литейным сплавом, из него получают 64% всех отливок по массе.
Высокопрочный чугун с шаровидным графитом
. Высокопрочный чугун получают присадкой в жидкий чугун (модифицированием) магния или церия в количестве 0,03-0,07%. По содержанию остальных элементов высокопрочный чугун не отличается от обычного серого чугуна. Под действием магния (или церия) графит в процессе кристаллизации принимает не пластинчатую, а шаровидную форму. Шаровидный графит значительно меньше ослабляет металлическую основу чугуна, чем пластинчатый, поэтому эти чугуны имеют более высокие механические свойства, не уступающие литой углеродистой стали, сохраняя при этом хорошие литейные свойства. Высокопрочные чугуны, как и серые, разделяются по строению металлической основы на ферритный, феррито-перлитный, перлитный.
Чугун маркируется буквами ВЧ (высокопрочный чугун) и числом, показывающим минимальную величину временного сопротивления при растяжении в МПа·10-1. Например, чугуны марок ВЧ35 и ВЧ100 имеют временное сопротивление при растяжении 350 и 1000МПа соответственно. Марки высок5опрочных чугунов согласно ГОСТ7293-85 от ВЧ35 до ВЧ100.
Отливки из высокопрочного чугуна используют в автостроении и дизелестроении (коленчатые валы, крышки цилиндров и др.) в тяжелом машиностроении (детали прокатных станов, траверсы прессов, прокатные валки и др.), химической и нефтяной промышленности (корпуса насосов и др.). Для повышения механических свойств высокопрочные чугуны подвергают специальной термической обработке, состоящей из нагрева до 9500С, охлаждения до 6000С и подогрева до 7250С с длительной выдержкой при этой температуре, обеспечивающей получение зернистого перлита.
Ковкий чугун
получают длительным нагревом при высоких температурах (отжигом) отливок из белого чугуна. В результате отжига образуется графит хлопьевидной формы. Такой графит по сравнению с пластинчатым меньше снижает прочность и пластичность металлической основы структуры чугуна. Кроме того, чугун имеет пониженное содержание углерода и кремния. Металлическая основа ковкого чугуна: феррит (ферритный ковкий чугун), феррит и перлит (феррито-перлитный ковкий чугун), перлит (перлитный ковкий чугун). Наибольшей пластичностью обладает ферритный ковкий чугун, который наиболее широко применяют в машиностроении.
Толщина сечения отливки из ковкого чугуна не должна превышать 40 мм. При большем размере отливок в сердцевине образуется пластинчатый графит и чугун становится непригодным для отжига. Продолжительность отжига составляет 70-80 часов. Для ускорения отжига применяют различные меры: чугун модифицируют алюминием, повышают температуру нагрева чугуна перед разливкой, повышают температуру графитизации.
Ковкий чугун маркируют буквами КЧ (ковкий чугун) и цифрами. Первые две цифры указывают минимальную величину временного сопротивления при растяжении в МПа·10-1, вторые – относительное удлинение в процентах. Например, чугун марки КЧ30-6 имеет временное сопротивление разрыву 300 МПа (не менее) и относительное удлинение 6% (не менее). Некоторые марки ковких чугунов по ГОСТ 1215-79 – КЧ 30-6; КЧ35-10, КЧ60-3, КЧ80-1,5 и др.
Из отливок ковкого чугуна изготавливают детали, работающие при ударных и вибрационных нагрузках (картеры редукторов, ступицы, крюки, вилки карданных валов, муфты, тормозные колодки и др.). Для повышения твердости, износостойкости и прочности ковкого чугуна применяют нормализацию с 800-8500С или закалку с 850-9000С и отпуск при 450-7000С.
Белый чугун
Белый чугун — это разновидность чугуна, которая в своём составе содержит углеродные соединения. В этом сплаве они называются цементитами. Своё название подобный металл получил благодаря характерному белому цвету и блеску, который хорошо виден на изломе. Этот блеск проявляется благодаря тому, что в составе подобного чугуна отсутствуют большие включения графита. В процентном отношении, он составляет не более 0,3%. Поэтому обнаружить его можно только спектральным или химическим анализом.
Виды отжига
Для образования белого чугуна в промышленности применяется скорое охлаждение сплава. На сегодня активно применяются такие основные виды отжига углеродистого сплава:
- смягчающий отжиг применяется преимущественно для увеличения в составе чугуна феррита;
- отжиг для снятия внутренних напряжений и минимизации фазовых превращений;
- графитизирующий отжиг, по итогу чего возможно получить ковкий чугун;
- нормализация при температурном режиме 850-960 градусов, в результате чего получают графит и перлит, а также увеличивается износостойкость и прочность.
Состав и виды белого чугуна
Белый чугун состоит из так называемой цементитной эвтектики. В связи с этим его делят на три категории:
Кроме приведенной классификации его разделяют на обыкновенный, отбеленный и легированный.
Внутренняя структура белого чугуна представляет собой сплав двух элементов: железа и углерода. Несмотря на высокотемпературное производство в нём сохраняется структура с мелкой зернистостью. Поэтому если надломить деталь из такого металла будет наблюдаться характерный белый цвет. Кроме этого, в структуре доэвтектического сплава, например, твёрдых марок, кроме перлита и вторичного цементита всегда присутствует цементит. Его процентное содержание может приближаться к 100%. Это характерно для эвтектического металла. Для третьего вида структура представляет собой состав из эвтектики (Лп) и первичного цементита.
Одной из разновидностей подобных сплавов является так называемый отбелённый чугун. Его основу, то есть сердцевину, составляет серый или высокопрочный чугун. Поверхностный слой содержит высокий процент таких элементов, как ледебурит и перлит. Эффекта отбеливания глубиной до 30 мм добиваются, используя метод быстрого охлаждения. В результате поверхностный слой получается из белого цвета, а далее отливка состоит из обыкновенного серого сплава.
Структура белого чугуна
В зависимости от процентного содержания легированных добавок, различают следующие виды металла:
В качестве легирующих добавок применяют достаточно распространённые элементы. Полученный таким образом легированный белый чугун приобретает новые, заранее заданные свойства.
Белый чугун (стр. 1 из 2)
В белом (предельном) чугуне почти весь углерод содержится в виде цементита. Белый чугун обладает следующими свойствами:
— светло-серый, практически белый цвет;
— не поддается механической обработке.
Белый чугун применяется только для переделки деталей в сталь, но никак не для их изготовления.
Предельные мартеновские чугуны содержат (%): углерода 3,5—4; кремния 0,3—1,5, марганца 1,5—3,5; фосфора 0,15—0,3, серы 0,03— 0,07; остальное — железо
Чугуны — это железоуглеродистые сплавы с содержанием углерода более 2%. Различают белые (предельные), серые (литейные) и ковкие чугуны.
Белыми чугунами называют железоуглеродистые сплавы, в которых весь углерод химически связан с железом. Вследствие этого они имеют повышенные твердость и хрупкость и поэтому мало применяются в технике. Используют их преимущественно как полупродукт для переработки в сталь и для получения ковких чугунов.
Белые чугуны редко используются в народном хозяйстве в качестве конструкционных материалов, так как из-за большого содержания цементита очень хрупкие и твердые, с трудом отливаются и обрабатываются инструментом. Из них делают детали гидромашин, пескометов и других конструкций, работающие в условиях повышенного абразивного изнашивания. Для увеличения изно-состойкости белые чугуны легируют хромом, ванадием, молибденом и другими карбидообразующими элементами. Маркировка белых чугунов не установлена.
Разновидностью белых чугунов является отбеленные чугуны. Поверхностные слои изделий из таких чугунов имеют структуру белого (или половинчатого) чугуна, а сердцевина — серого чугуна. Отбел на некоторую глубину (12. 30 мм) получают путем быстрого охлаждения поверхности (например, отливка чугуна в металлические или песчаные формы). Для снятия структурных напряжений, которые могут привести к образованию трещин, отливки подвергают нагреву при 500. 550 °С. Высокая иэносостойкость отбеленных чугунов обусловлена твердостью поверхности, достигающей 400. 500 HV. Из отбеленного чугуна изготовляют прокатные валки листовых станов, колеса, шары для мельниц и др.
Предельные пластические и упругие деформации белого чугуна
14.11.2009 | Автор: admin
Предельные пластические и упругие деформации белого чугуна в интервале температур 700—1150° С определяли испытанием трех образцов на растяжение в каждой температурной точке через 50° С на высокотемпературном микроскопе НМ-4 «Union». Об образовании горячей трещины в отливке свидетельствует получение отрицательной величины ек. Чем большее положительное значение имеет критерий, тем меньше склонность металла к трещинообразованию.
На основании экспериментальных данных, полученных при испытании образцов (2,80% С; 1,20% Si; 0,14% S; 0,40%q Mn; 0,12% Р) на растяжение в интервале температур 700—1150° С, и результатов обработки осциллограмм изменения свободной и затрудненной усадки при понижении температуры охлаждающихся после заливки образцов строили графики. Заметное увеличение предельных упругих деформаций в белом чугуне наблюдается при 900° С.
Холодные трещины в отливках из белого чугуна
Холодные трещины возникают при температуре ниже 600—650° С, когда в материале отливки преобладают упругие деформации. Механизм их образования почти не отличается от механизма образования горячих трещин. По внешнему виду холодные трещины имеют незначительную ширину и правильные очертания, так как при их образовании разрушение происходит по зерну, со светлой или с цветами побежалости зернистой поверхностью излома. Основными причинами образования холодных трещин являются остаточные напряжения, возникающие в отливке при ее охлаждении, а также временные напряжения.
Свойства белого чугуна
Любой чугунный сплав, с одной стороны, очень прочный, но в то же время обладает достаточной хрупкостью. Поэтому в качестве основных положительных свойств белого чугуна можно выделить:
Белые чугуны, с пониженным процентом углерода, обладают большей устойчивостью к высоким температурам. Это свойство используется для снижения количества трещин в отливках.
Внешний вид белого чугуна
К недостаткам следует отнести:
Ещё одним недостатком является плохая свариваемость. Проблемы в сварке деталей из подобного материала вызваны тем, что в момент сварки происходит образование трещин, как при нагреве, так и при охлаждении.
Свойства
В сравнении с другими металлами, железоуглеродистый сплав имеет такие характеристики и свойства:
- высокая хрупкость;
- повышенная твердость;
- высокое удельное сопротивление;
- низкие литейные свойства;
- низкая обрабатываемость;
- хорошая тепловая стойкость;
- большая усадка (до 2 %) и плохое заполнение литейных форм;
- низкая ударная устойчивость;
- высокая износостойкость.
Металлическая масса обладает большой коррозийной стойкостью в соляной или азотной кислоте. Если в структуре имеются свободные карбиды, то при помещении чугуна в серную кислоту будет наблюдаться коррозия.
Белые чугуны, в составе которых имеется меньший процент углерода, считаются более устойчивыми сплавами к высоким температурам. За счет повышенной механической прочности и вязкости, что появляются при воздействии высоких температур, минимизируется образование трещин в отливках.
Маркировка белого чугуна
Для маркировки белого чугуна применяют буквы русского алфавита и цифры. Если в нём имеются примеси, то маркировка начинается с буквы «Ч». Состав имеющихся легирующих добавок можно определить по последующим буквам П, ПЛ, ПФ, ПВК. Они свидетельствую о наличии кремния. Если полученный металл обладает повышенной износостойкостью, то его маркировка будет начинаться с буквы «И», например ИЧХ, ИЧ. Например, наличие в маркировке обозначения «Ш», означает, что в структуре сплава имеется графит шаровидной формы.
Цифры указывают на количество дополнительных веществ, присутствующих в белом чугуне.
Марка ЧН20Д2ХШ расшифровывается следующим образом. Это жаропрочный высоколегированный металл. Он содержит следующие элементы: никеля — 20%, меди — 2%, хрома — 1%. Остальные элементы — это железо, углерод, графит шаровидной формы.
Область применения
Этот сплав используют в следующих отраслях: машиностроение, станкостроение, судостроение. Из него производят некоторые элементы бытовых изделий. В машиностроении из него изготавливают: детали грузовых и легковых автомобилей, тракторов, комбайнов и другой сельскохозяйственной техники. Применение легирующих добавок позволяет получать специально заданные свойства. Например, используют при изготовлении плит с различной формой поверхности.
Отливка из белого чугуна
Отбелённый чугун имеет достаточно ограниченную область применения. Из него производят детали несложной конфигурации. Например: шары для мельниц, колеса различного назначения, детали для прокатных станов.
Широкое применение он получил при производстве деталей таких крупных агрегатов, как гидравлические и формовочные машины, другие промышленные механизмы этого направления. Специфическая особенность их работы заключается в том, что они постоянно подвергаются воздействию абразивного материала.
Источник
Применение
Исходя из вышеперечисленных свойств, можно сделать вывод, что практиковать термическую и механическую обработку белого чугуна не имеет смысла. Свое основное применение сплав нашел только в виде отливки. Следовательно, наилучшие свойства белый чугун получает только при соблюдении всех условий отливки. Данный способ обработки активно применяется, если необходимо изготовить массивные изделия, которые должны обладать высокой поверхностной твердостью.
Помимо этого, производится отжиг белого чугуна, в результате чего получают ковкие чугуны, что служат для изготовления тонкостенного литья, например:
- автомобильных деталей;
- изделий для сельского хозяйства;
- деталей для тракторов, комбайнов и др.
Сплав также используют для изготовления плит с ребристой или гладкой поверхностью, а также активно применяют для производства стали и серого чугуна.
Применение белых чугунов в сельском хозяйстве в виде конструктивного металла довольно ограничено. Чаще всего железоуглеродистый сплав используется для изготовления деталей гидромашин, пескометов и других механизмов, которые могут функционировать в условиях повышенного абразивного изнашивания.
Белый чугун
Полезное
Смотреть что такое «Белый чугун» в других словарях:
Белый чугун — Фазы железоуглеродистых сплавов Феррит (твердый раствор внедрения C в α железе с объемно центрированной кубической решеткой) Аустенит (твердый раствор внедрения C в γ железе с гранецентрированной кубической решеткой) Цементит (карбид железа; Fe3C … Википедия
Белый чугун — чугун, в котором весь углерод находится в виде карбида железа или цементита. См. также: Металлургия Финансовый словарь Финам … Финансовый словарь
белый чугун — чугун, в котором весь углерод химически связан в цементите; получил название по матово белому излому. Белый чугун обладает высокой твердостью и хрупкостью, практически не поддается обработке режущим инструментом. Белый чугун широко… … Энциклопедический словарь по металлургии
Белый чугун — (назван по виду излома, имеющего матово белый цвет) чугун, в котором весь углерод находится в форме цементита. Структура белого чугуна при нормальной температуре состоит из цементита и перлита (рис. Б 7). Белый чугун обладает высокой твердостью и … Энциклопедический словарь по металлургии
БЕЛЫЙ ЧУГУН — (назван по виду излома, имеющего матово белый цвет) чугун, в котором весь углерод находится в форме цементита. Структура белого чугуна при нормальной температуре состоит из цементита и перлита (рис. Б 7). Белый чугун обладает высокой твердостью и … Металлургический словарь
Белый чугун — White iron Белый чугун. Чугун, который является по существу свободным от графита, и углерод присутствует в виде отдельных зерен твердого Fe3C. Белый чугун имеет белую, кристаллическую поверхность излома, проходящего по граням карбида железа.… … Словарь металлургических терминов
белый чугун — baltasis ketus statusas T sritis chemija apibrėžtis Ketus, turintis 3,5–3,6% C, 0,6–1% Si, 0,5–0,6% Mn, 0,5–1,75% Ni, белый чугун0,2% V, белый чугун0,5% P. atitikmenys: angl. cast iron; white iron rus. белый чугун … Chemijos terminų aiškinamasis žodynas
Белый чугун — см. в ст. Чугун … Большая советская энциклопедия
БЕЛЫЙ ЧУГУН — см. в ст. Чугун … Большой энциклопедический политехнический словарь
БЕЛЫЙ — БЕЛЫЙ, о цвете, масти, краске: бесцветный, противный черному. | В сравнительном смысле, светлый, бледный. Белое вино, белое пиво, мед, сливы; белое лицо, белый хлеб, называются так для отличия от красного (вина, меда), черного (пива, слив, хлеба) … Толковый словарь Даля
Источник
Чугун содержит углерода
?Чугу?н — сплав железа с углеродом ( и прочими элементами ). Содержание углерода в чугуне не менее 2, 14 % ( точка предельной растворимости углерода в аустените на диаграмме состояний ) : меньше — сталь. Углерод придаёт сплавам железа крепость и твёрдость, снижая пластичность и вязкость. Углерод в чугуне может содержаться в виде цементита и графита. В зависимости от формы графита и количества цементита, выделяют : бледный, бесцветный, ковкий и высокопрочные чугуны. Чугуны содержат постоянные примеси ( Si, Mn, S, P ), а в отдельных событиях также легирующие элементы ( Cr, Ni, V, Al и др. ). Обыкновенно, чугун хрупок.
Чугу?н — сплав железа с углеродом ( и прочими элементами ). Содержание углерода в чугуне не менее 2, 14 % ( точка предельной растворимости углерода в аустените на диаграмме состояний ) : меньше — сталь. Углерод придаёт сплавам железа крепость и твёрдость, снижая пластичность и вязкость. Углерод в чугуне может содержаться в виде цементита и графита. В зависимости от формы графита и количества цементита, выделяют : бледный, бесцветный, ковкий и высокопрочные чугуны. Чугуны содержат постоянные примеси ( Si, Mn, S, P ), а в отдельных событиях также легирующие элементы ( Cr, Ni, V, Al и др. ). Обыкновенно, чугун хрупок.
Ковкий чугун получают длительным отжигом белого чугуна, в итоге которого образуется графит хлопьевидной формы. Металлическая основа такого чугуна : феррит и реже перлит. Ковкий чугун получил свое название из — за повышенной пластичности и вязкости ( при всем при том, что обработке давлением не подвергается ). Ковкий чугун обладает повышенной крепостью при растяжении и рослым сопротивлением удару. Из ковкого чугуна изготовляют детали непростой фигуры : картеры заднего моста машин, тормозные колодки, тройники, угольники и т. д.
При нормальных температурах структура чугуна состоит из перлита, вторичного цементита и ледебурита. Ледебурит после эвтектоидного превращения представляет собой механическую смесь перлита и цементита. Чугуны с содержанием углерода до 4, 3 % называются доэвтектическими чугунами. такие чугуны называются белыми чугунами , если углерод находится в чугунах в химически связанном состоянии с железом, т.е. в цементите . Микроструктура сплава IV, воображающего собой доэвтектический белый чугун, изображена на рис.
По содержанию углерода чугуны подразделяются на доэвтектический — 2, 14 … 4, 3 % С, эвтектический — 4, 3 % С и заэвтектический — 4, 3 … 6, 67 % С углерода. Доэвтектические чугуны, содержащие 2, 14 … 4, 3 % С, после окончательного охлаждения имеют структуру перлита, ледебурита ( перлит + цементит ) и вторичного цементита. Эвтектический чугун ( 4, 3% С ) при температуре ниже + 727 °С состоит только из ледебурита ( перлит + цементит ). Заэвтектический, который нельзя отменить 4, 3 … 6, 67 % С, при температуре ниже + 727 °С состоят из первичного цементита и ледебурита ( перлит + цементит ). На практике наибольшее распространение получили доэвтектические чугуны, содержащие 2, 4 … 3, 8% С углерода. Тельное значение содержания углерода в чугуне определяется его технологическими характеристиками при литье — обеспечение хорошей жидкотекучести. Жидкотекучесть — это способность металлов и сплавов в расплавленном состоянии заполнять полость формы, точно воспроизводить очертания и размеры отливки. Увеличенное содержание углерода в чугуне выше 3, 8% С приводит к резкому возрастанию твердости и хрупкости. Жидкотекучесть определяется по спиральной пробе, а ее величина по длине заполнения части спирали. Усадка — уменьшение линейных и обьемных размеров металла, затопленного в фигуру при его кристаллизации и охлаждении.
В стандарте Германии DIN 1693 — 506 — 50 в прозвании марки буквы обозначают : G — «gegosen» ( отлито ), G — «gubeisen» ( чугун ), G — «globular» ( шаровой ), 50 — наименьшее значение предела крепости в МПа 10 — 1 ( например, GGG — 50 ). В В большинстве национальных образцов на высокопрочные нелегированные чугуны, регламентирующих механические свойства, химический состав чугунов не оговаривается. Неизбежными для контроля являются предел крепости при растяжении, предел текучести, и относительное удлинение. В образцах всех сторон, за исключением стандартов Германии и США, приводятся контролируемые пределы величин твердости.
Включая небольшое сопротивление отливок из серого чугуна растягивающим и ударным нагрузкам, следует использовать сей материал для подробностей, которые подвергаются сжимающим или изгибающим нагрузкам. В станкостроении это – базовые, корпусные детали, кронштейны, зубчатые колеса, ведущие ; в автостроении — блоки цилиндров, поршневые кольца, распределительные валы, диски сцепления. Отливки из серого чугуна также используются в электромашиностроении, для изготовления товаров народного потребления.
Высокопрочные чугуны ( ГОСТ 7293 ) могут иметь ферритную ( ВЧ 35 ), феррито — перлитную ( ВЧ45 ) и перлитную ( ВЧ 80 ) металлическую основу. Зарабатывают эти чугуны из бесцветных, в результате модифицирования магнием или церием ( добавляется 0, 03…0, 07% от массы отливки ). По сравнению с серыми чугунами, механические свойства повышаются, это порождено отсутствием неравномерности в распределении усилий из — за шаровой формы графита.
Белый чугун
Феррит (твердый раствор внедрения C в α-железе с объемно-центрированной кубической решеткой) Аустенит (твердый раствор внедрения C в γ-железе с гранецентрированной кубической решеткой) Цементит (карбид железа; Fe3C метастабильная высокоуглеродистая фаза) Графит стабильная высокоуглеродистая фаза
Ледебурит (эвтектическая смесь кристаллов цементита и аустенита, превращающегося при охлаждении в перлит) Мартенсит (сильно пересыщенный твердый раствор углерода в α-железе с объемно-центрированной терагональной решеткой) Перлит (эвтектоидная смесь, состоящая из тонких чередующихся пластинок феррита и цементита) Сорбит (дисперсный перлит) Троостит (высокодисперсный перлит) Бейнит (устар: игольчатый троостит) — ультрадисперсная смесь кристаллов низкоуглеродистого мартенсита и карбидов железа
Белый чугун (хрупкий, содержит ледебурит и не содержит графит) Серый чугун (графит в форме пластин) Ковкий чугун (графит в хлопьях) Высокопрочный чугун (графит в форме сфероидов) Половинчатый чугун (содержит и графит, и ледебурит)
Бе́лый чугу́н
— вид чугуна, в котором углерод в связанном состоянии в виде цементита, в изломе имеет белый цвет и металлический блеск. В структуре такого чугуна отсутствуют видимые включения графита и лишь незначительная его часть (0,03-0,30 %) обнаруживается тонкими методами химического анализа или визуально при больших увеличениях. Основная металлическая масса белого чугуна состоит из цементитной эвтектики, вторичного и эвтектоидного цементита, а легированного белого чугуна — из сложных карбидов и легированного феррита.
МИКРОСТРУКТУРА ЧУГУНОВ
ЦЕЛЬ РАБОТЫ
Исследовать металлографически микроструктуру белых и графитизированных чугунов. Изучить маркировку и практическое применение графитизированных чугунов.
ПРИБОРЫ И МАТЕРИАЛЫ
Металлографические микроскопы. Коллекция микрошлифов чугунов.
ОСНОВНЫЕ ПОЛОЖЕНИЯ
К чугунам относятся сплавы железа с углеродом, содержащие более 2,14 %С (рис. 1). Практическое применение находят чугуны с содержанием углерода до 4 – 4,5 %. При большем количестве углерода, механические свойства существенно ухудшаются.
Промышленные чугуны не являются двойными сплавами, а содержат кроме Fe и С,
такие же примеси, как и углеродистые стали Мn, Si, S, P и др. Однако в чугунах этих примесей больше и их влияние иное, чем в сталях. Если весь имеющийся в чугуне углерод находится в химически связанном состоянии, в виде карбида железа (F3C
—
цементит), то такой чугун называется белым. Чугуны, в которых весь углерод или большая часть, находится в свободном состоянии в виде графитных включений той или иной формы, называются графитизированными.
Белые чугуны
Микроскопический анализ белых чугунов проводят, используя диаграмму состояния Fe – Fe3С (рис. l). Из-за присутствия большого количества цементита белый чугун обладает высокой твердостью (HB = 4500 – 5500 МПа), хрупок и практически не поддастся обработке резанием. Поэтому белый чугун имеет ограниченное применение, как конструкционный материал.
Обычной структурной составляющей белых чугунов является ледебурит. Ледебуритом
называют смесь аустенита и цементита, образующуюся по эвтектической реакции при переохлаждении жидкости состава точки С (4,3 % углерода) ниже температуры 1147 °C.
эвтектика (ледебурит) |
Чугун, содержащий 4,3 %С (точка С), называется белым эвтектическим чугуном. Левее точки С находятся доэвтектические, а правее — заэвтектические белые чугуны. В доэвтектических белых чугунах из жидкой фазы кристаллизуется аустенит, затем эвтектика – ледебурит.
При охлаждении чугуна в интервале температур от 1147 °С до 727 °С аустенит обедняется углеродом, его состав изменяется по линии ЕS и выделяется вторичный цементит. При небольшом переохлаждении ниже 727 °С
аутенит состава точки S по эвтектоидной реакции распадается на перлит (Ф + Ц)
Рис. 1. Структурная диаграмма состояния системы железо-цементит (в упрощенном виде)
Вторичный цементит, выделяющийся по границам зерен аустенита, сливается с цементитом ледебурита. Под микроскопом трудно различить включения вторичного цементита.
Таким образом, при комнатной температуре в доэвтектических белых чугунах находятся три структурные составляющие – перлит, ледебурит и вторичный цементит (рис. 2).
Эвтектический белый чугун при комнатной температуре состоит из одной структурной составляющей – ледебурита. Последний, в свою очередь, состоит из перлита и цементита и называется ледебуритом превращенным.
В заэвтектических белых чугунах из жидкости кристаллизуется первичный цементит в виде плоских игл, затем образуется ледебурит.
Рис. 2. Микроструктура белых чугунов (слева схематическое изображение): а) доэвтектический; б) эвтектический; в) заэвтектический
При комнатной температуре эаэвтектический белый чугун содержит две структурные составляющие: первичный цементит и ледебурит. Фазовый состав белых чугунов при комнатной температуре такой же, как в углеродистых сталях в равновесном состоянии, все они состоят из феррита и цементита.
Графитизированные чугуны.
В зависимости от формы графитных включений различают серые, высокопрочные, ковкие чугуны и чугуны с вермикулярным графитом.
Серые чугуны получают при меньшей скорости охлаждения отливок, чем белые. Они содержат 1 – 3 %Si
– обладающего сильным графитизирующим действием.
Серый чугун широко применяется в машиностроении. Он хорошо обрабатывается режущим инструментом. Из него производят станины станков, блоки цилиндров, фундаментные рамы, цилиндровые втулки, поршни и т.д.
Серые чугуны маркируются буквами СЧ и далее следует величина предела прочности при растяжении (в кгс/мм2),
например СЧ 15, CЧ 20, СЧ 35 (ГОСТ 1412-85).
Графит в сером чугуне наблюдается в виде темных включении на светлом фоне нетравленного шлифа. По нетравленному шлифу оценивают форму и дисперсность графита, от которых в сильной степени зависят механические свойства серого чугуна.
Серые чугуны подразделяют по микроструктуре металлической основы в зависимости от полноты графитизации. Степень или полноту графитизации оценивают по количеству свободно выделившегося (несвязанного) углерода.
Полнота графитизации зависит от многих факторов, из которых главными являются скорость охлаждения и состав сплава. При быстром охлаждении кинетически более выгодно образование цементита, а не графита. Чем медленнее охлаждение, тем больше степень графитизации. Кремний действует в ту же сторону, что и замедление охлаждения, т.е. способствует графитизации, а марганец – карбидообразующий элемент – затрудняет графитизацию.
Если графитизация в твердом состоянии прошла полностью, то чугун содержит две структурные составляющие – графит и феррит. Такой сплав называется серым чугуном на ферритной основе (рис. За). Если же эвтектоидный распад аустенита прошел в соответствии с метастабильной системой
эвтектоид (перлит)
то структура чугуна состоит из графита и перлита. Такой сплав называют серым чугуном на перлитной основе. Наконец, возможен промежуточный вариант, когда аустенит частично распадается по эвтектоидной реакции на феррит и графит, а частично с образованием перлита. В этом случае чугун содержит три структурные – графит, феррит и перлит. Такой сплав называют серым чугуном на феррито-перлитной основе.
Феррит и перлит в металлической основе чугуна имеют те же микроструктурные признаки, что и в сталях. Серые чугуны содержат повышенное количество фосфора, увеличивающего жидкотекучесть и дающего тройную эвтектику.
В металлической основе серого чугуна фосфидная эвтектика обнаруживается в виде светлых, хорошо очерченных участков.
Высокопрочный чугун с шаровидным графитом получают модифицированием серого чугуна щелочно-земельными элементами. Чаще для этого используют магний, вводя его в жидкий расплав в количестве 0,02 – 0,03 %. Под действием магния графит кристаллизуется в шаровидной форме (рис.3б). Шаровидные включения графита в металлической матрице не являются такими сильными концентраторами напряжений, как пластинки графита в сером чугуне. Чугуны с шаровидным графитом имеют более высокие механические свойства, не уступающие литой углеродистой стали.
Маркируют высокопрочный чугун буквами ВЧ и далее следуют величины предела прочности при растяжении (в кгс/мм2)
ВЧ 40, ВЧ 45, ВЧ 80 (ГОСТ 7293-85). Так же, как и серые чугуны, они подразделяются по микроструктуре металлической основы в зависимости от полноты графитизации и бывают на ферритной, феррито-перлитной, перлитной основах. Высокопрочный чугун используется во многих областях техники взамен литой и кованой стали, серого и ковкого чугунов. Высокие механические свойства дают возможность широко применять его для производства отливок ответственного назначения, в том числе и в судовом машиностроении: головок цилиндров, турбокомпрессоров, напорных труб, коленчатых и распределительных валов и т.п.
Ковкий чугун получают путем отжига отливок из белого чугуна. Получение ковкого чугуна основано на том, что вместо неустойчивого цементита белого чугуна при повышенных температурах образуется графит отжига белого чугуна. Мелкие изделия сложной конфигурации, отлитые из белого чугуна, отжигают (получают ковкий чугун) для придания достаточной пластичности, необходимой при их использовании в работе. Ковкий чугун маркируют буквами КЧ и далее следуют величины предела прочности при растяжении (в кгс/мм2)
и относительного удлинения (в %), например, КЧ 35-10, КЧ 60-3 (ГОСТ 1215-79).
Графитизация идет путем растворения метастабильного цементита в аустените и одновременного выделения из аустенита более стабильного графита. Чем больше время выдержки при отжиге и меньше скорость охлаждения, тем полнее проходит графитизация. В зависимости от графитизации встречаются те же три основные типа структур, что и в сером чугуне с пластинчатым графитом: ковкие чугуны на ферритной, феррито-перлитной и перлитной основах (рис. Зв). От серых (литейных) чугунов ковкие чугуны отличаются по микроструктуре только формой графита.
Если на шлифах (рис. За) серых чугунов графит имеет форму извилистых прожилок, то в ковких чугунах графит, называемый углеродом отжига, находится в форме более компактных хлопьевидных включении с рваными краями. Более компактная форма графита обеспечивает повышение механических свойств ковкого чугуна по сравнению с серым чугуном с пластинчатым графитом. Обладая механическими свойствами, близкими к литой стали и высокопрочному чугуну, высоким сопротивлением ударным нагрузкам, износостойкостью, обрабатываемостью резанием, ковкий чугун находит свое применение во многих отраслях промышленности. Из него изготавливают поршни, шестерни, шатуны, скобы, иллюминаторные кольца и др.
Чугуны с вермикулярным графитом получают как и высокопрочные чугуны модифицированием, только в расплав при этом вводится меньшее количество сфероидизирующих металлов. Маркируют чугуны с вермикулярным графитом буквами ЧВГ и далее следует цифра, обозначающая величину предела прочности при растяжении ( кгс/мм2),
например, ЧВГ З0, ЧВГ 45 (ГОСТ 28394-89). Вермикулярный графит подобно пластинчатому графиту виден на металлографическом шлифе в форме прожилок, но они меньшего размера, утолщенные, с округлыми краями (рис. Зг). Микроструктура металлической основы ЧВГ также как у других графитизированных чугунов может быть ферритной, перлитной и феррито-перлитной.
По механическим свойствам чугуны с вермикулярным графитом превосходят серые чугуны и близки к высокопрочным чугунам, а демпфирующая способность и теплофизические свойства ЧВГ выше, чем у высокопрочных чугунов. Чугуны с вермикулярным графитом более технологичны, чем высокопрочные и соперничают с серыми чугунами. Для них характерны высокая жидкотекучесть, обрабатываемость резанием, малая усадка. Чугуны с вермикулярньм графитом широко используются в мировом и отечественном автомобилестроении, тракторостроении, судостроении, дизелестроении, энергетическом и металлургическом машиностроении для деталей, работающих при значительных механических нагрузках в условиях износа, гидрокавитации, переменном повышении температуры. Например, ЧВГ используется взамен СЧ для производства головок цилиндров крупных морских дизельных ДВС.
СОДЕРЖАНИЕ ОТЧЕТА
1. Название работы. 2. Цель работы. 3. Фрагмент диаграммы Fе – Fe3C (2,14 – 6,67 %С).
4. Схемы микроструктур исследованных образцов c указанием их марок. 5. Выводы.
КОНТРОЛЬНЫЕ ВОПРОСЫ
1. Какие сплавы относятся к чугунам? 2. На какие группы подразделяют чугуны? 3. Какую диаграмму состояния используют при анализе микроструктуры белых чугунов? 4. Почему белый чугун имеет ограниченное использование? 5. Что называют ледебуритом? 6. Какой процесс протекает в белых чугунах при переохлаждении расплава ниже 1147 °С ? 7. Сколько углерода содержится в эвтектическом белом чугуне? 8. Сколько структурных составляющих можно увидеть при комнатной температуре в белом доэвтектическом чугуне? 9. Сколько структурных составляющих, можно увидеть при комнатной температуре в белом эвтектическом чугуне? 10. Сколько структурных составляющих можно увидеть при комнатной температуре в белом заэвтектическом чугуне? 11. Каким методом получают серые чугуны? 12. Каким методом получают ковкий чугун? 13. Каким методом получают высокопрочный чугун? 14. Каким методом получают чугун с вермикулярным графитом? 15. Как маркируются чугуны? 16. От каких факторов зависит степень графитизации? 17. Сколько структурных составляющих содержит чугун, если графитизация в твердом состоянии прошла полностью? 18. Чем отличаются микроструктуры графитизированных чугунов на одинаковой основе? 19. В чем сущность эвтектического превращения в чугунах?
Назад
Физико-механические свойства
Отливки белого чугуна обладают износостойкостью, относительной жаростойкостью и коррозионной стойкостью. Наличие в части их сечения структуры, отличной от структуры белого чугуна, понижает эти свойства. Прочность белого чугуна снижается с увеличением содержания в нём углерода, а следовательно, и карбидов. Твёрдость белого чугуна возрастает с ростом доли карбидов в его структуре, а следовательно, и с увеличением содержания углерода.
Наивысшую твёрдость имеет белый чугун с мартенситной структурой основной металлической массы. Коагуляция карбидов резко снижает твёрдость чугуна.
При растворении в карбиде железа примесей и образовании сложных карбидов твёрдость их и белого чугуна повышается. По интенсивности влияния на твёрдость белого чугуна основные и легирующие элементы располагаются в следующей последовательности, начиная с углерода, определяющего количество карбидов и интенсивнее иных элементов увеличивающего твёрдость чугуна.
Действие никеля и марганца, а отчасти хрома и молибдена, обуславливается их влиянием на образование мартенситно — карбидной структуры и содержание их в количествах, соответствующих содержанию в чугуне углерода, обеспечивает максимальную твёрдость белого чугуна.
Особо высокий твёрдостью НВ 800—850 обладает чугун с содержанием 0,7-1,8 % бора. Белый чугун является весьма ценным материалом для деталей, работающих в условиях износа при очень высоких удельных давлениях и преимущественно без смазки.
Прямая зависимость между износостойкостью и твёрдостью отсутствует; твёрдость не определяет износостойкость, но должна учитываться в совокупности со структурой чугуна. Лучшей износостойкостью обладает белый чугун с тонким строением основной металлической массы, в которой в виде отдельных мелких и равномерно распределённых включений или в виде тонкой сетки расположены карбиды, фосфиды и пр.
Структура основной металлической массы определяет и специальные свойства легированного чугуна — его коррозионную стойкость, жаропрочность, электросопротивление.
В зависимости от состава и концентрации легирующих элементов, основная металлическая масса легированного белого чугуна может быть карбидо — аустенитной, карбидо — перлитной и, помимо этого, содержать легированный феррит.
Основным легирующим элементом при этом является хром, связывающий углерод в карбиды хрома и сложные карбиды хрома и железа.
Твёрдые растворы этих карбидов обладают высоким электродным потенциалом, близким к потенциалу второй структурной составляющей основной металлической массы чугуна — хромистого феррита, а возникающие защитные окисные плёнки определяют повышенную коррозионную стойкость высокохромистого белого чугуна.
В присутствии хрома как дополнительного компонента существенно повышается температурная стойкость карбидов в связи со значительным замедлением диффузионных процессов при комплексном легировании.
Эти характерные особенности легированного белого чугуна определили области его использования в зависимости от структуры в качестве нержавеющего и магнитного чугуна и чугуна с высоким электросопротивлением.
Источник
Нержавеющие сплавы
Для повышения устойчивости белого чугуна к коррозии в него добавляют большое количество хрома. Это приводит к образованию оксидной пленки на поверхности и дальнейшему прекращению доступа кислорода. Кроме этого высокохромистый белый чугун приобретает устойчивость к щелочным растворам, серной и азотной кислоте.
Дополнительно процесс легирования хромом предупреждает возможность коагуляции карбидов при сильном нагреве сплава. Это позволяет получать качественные сварные соединения деталей из белого чугуна. Если в процессе легирования вместе с хромом добавлены никель и молибден, то полученный нержавеющий сплав по прочности можно сравнивать с лучшими жаропрочными сталями, которые намного дороже.
Хромосодержащий белый чугун применяют в случаях тяжелых эксплуатационных условий, присутствия щелочей и окислителей, потребности высокого электросопротивления.
Белый чугун — структура, состав, свойства, маркировка
Металлические сплавы железа и углерода, где содержание второго элемента превышает 2,14%, называют чугунами. К белым чугунам относят такие сплавы, в которых углерод представлен в виде карбида железа Fe3C (цементита). Именно из-за светлого цвета на изломе их и называют белым.
Условия изготовления отливок из белой марки приведены в ГОСТ 1215-79 и ГОСТ 26358-84. В них указаны технические требования, порядок приемки, испытаний, транспортирования и хранения чугунных сплавов. Маркируется буквами БЧ.
Виды выпускаемого белого чугуна
В зависимости кристаллической структуры, а так же наличия и соотношения составляющих элементов белые чугуны подразделяют на:
Отдельным видом выделяют чугунные сплавы с высоким удельным электрическим сопротивлением.
Внутренняя структура обыкновенного белого чугуна содержит углерод в виде цементитных зерен. Количество углерода влияет на температуру плавления и в зависимости от этого чугуны подразделяют на:
Эффекта отбеливания чугуна достигают путем быстрого охлаждения отливки, которая в результате получается неоднородной по своему составу. Верхний слой, толщиной до 30 мм, становится белым, а остальная сердцевина представляет собой обычный серый чугун.
Отбеленные чугуны
Данный сплав считается разновидностью белых чугунов. Добиться отбела на 12-30 мм возможно с помощью быстрого охлаждения поверхности железоуглеродистого сплава. Строение материала: поверхностная часть выполнена из белого, серый чугун в сердцевине. Из такого материала изготавливают колеса, шары для мельниц, прокатные валки, которые крепятся в станках для обработки листового проката.
Особенности получения белого чугуна
В процессе получения белого чугуна заданной структуры необходимо подавить процесс графитизации в течение всего времени кристаллизации жидкой массы. В данном случае имеет значение как грамотный подбор исходных материалов, так и соблюдение технологии охлаждения чугуна в форме.
Когда отливки производят из нелегированного чугуна в сырых песчаных формах, существует необходимость соблюдать пропорцию углерода и кремния: С (Si + lg R) Достоинства и недостатки
Как и все чугунные сплавы, белые отличаются большой прочностью в сочетании с хрупкостью при сильных механических ударах. В числе основных положительных качеств белого чугуна следует назвать:
Важным качеством белых чугунов считается очень хорошая устойчивость к воздействию высоких температур, которая используется для снижения количества трещин в первоначальных отливках.
К основным недостаткам относят такие качества, как:
Образование дефектов при сваривании из-за быстрого выгорания углерода и образования пор.
СЕРЫЙ ЧУГУН
В сплаве такого чугуна углерод – весь или частично – находится в виде пластинчатого графита. По примеру светлого чугуна, серый получил свое название из-за цвета излома. В состав серого чугуна входит также кремний, иногда – магний. Количество углерода в сером чугуне – от 2,9 до 3,7%.
Серый чугун, как и белый, отличается хрупкостью, но при этом он обладает высокими литейными свойствами, текучестью и малой усадкой. Из серого чугуна делают основы станков, цилиндры различных механизмов, поршни.
Чугуны (белый, серый, высокопрочный, ковкий). Получение, структура, маркировка, область применения
Белые чугуны: состав, свойства, область применения.
Углерод находится в виде цементита Fe3C. Излом будет белый, если сломать. В структуре доэвтектического чугуна HB 550 наряду с перлитом и вторичным цементитом присутствует хрупкая эвтектика (ледебурит), количество которой достигает 100% в эвтектическом чугуне. Структура заэвтектического чугуна состоит из эвтектики (Лп) и первичного цементита, выделяющегося при кристаллизации из жидкости в виде крупных пластин. Высокая твёрдость, трудно обрабатывается резанием. Гл. свойство: высокая износостойкость. Чугун хрупкий. Редко применяется в машиностроении. Используется при изготовлении жерновов на мельнице, прокатные валки на прокатных станках, изгороди делают из этого чугуна. Если отливка небольшая (до 10 кг), то образуется белый чугун при быстром охлаждении.
Получение: В доменных печах выплавляют белые чугуны трех типов: литейный коксовый, передельный коксовый и ферросплавы.
Структура не оказывает влияние на пластичность, она остается чрезвычайно низкой. Но оказывает влияние на твердость. Механическая прочность в основном определяется количеством, формой и размерами включений графита. Мелкие, завихренной формы чешуйки графита меньше снижают прочность. Такая форма достигается путем модифицирования. В качестве модификаторов применяют алюминий, силикокальций, ферросилиций.
Серый чугун широко применяется в машиностроении, так как легко обрабатывается и обладает хорошими свойствами.
В зависимости от прочности серый чугун подразделяют на 10
марок (ГОСТ 1412).
Серые чугуны при малом сопротивлении растяжению имеют достаточно высокое сопротивление сжатию.
Серые чугуны содержат углерода – 3,2…3,5 %
; кремния –
1,9…2,5 %
; марганца –
0,5…0,8 %
; фосфора –
0,1…0,3 %
; серы –
Обозначаются индексом СЧ (серый чугун) и числом, которое показывает значение предела прочности, умноженное на 10 -1 СЧ 15.
Получение: Графит образуется в серых чугунах в результате распада хрупкого цементита. Этот процесс называют графитизацией. Распад цементита вызывают искусственно путем введения кремния или специальной термической обработки белого чугуна.
Область применения
Обыкновенный белый чугун используют весьма ограниченно, поскольку он плохо применим к механической и термической обработке. Для производства изделий он часто применяется в виде необработанных или частично обработанных отливок.
Самое широкое применение сплав получил при изготовлении крупных деталей простой конфигурации. Это корпуса и детали станков и прокатных станов, шары для мельниц, приводные и опорные колеса. Кроме этого белый чугун используют для изготовления узлов агрегатов, которые испытывают на себе постоянное воздействие абразивных материалов.
Важным моментом является использование обычного чугуна в качестве сырья для изготовления ковких сортов железоуглеродистых чугунных и стальных сплавов.
ВЫСОКОПРОЧНЫЙ ЧУГУН
Ковкий чугун содержит углерод в виде графита в форме изолированных друг от друга хлопьев. Благодаря этому материал обладает большей пластичностью и вязкостью, чем остальные виды чугунов. Изготавливают ковкий чугун из белого чугуна, обрабатывая его длительным воздействием высокими температурами. В результате такой обработки в сплаве происходят процессы графитизации – распадается цементит, образуя графит.
Помимо своих высоких ковких характеристик, благодаря которым он и получил свое название, данный вид чугуна отличается также повышенными прочностью при растяжении и сопротивлением удару. Податливость ковкого чугуна механической обработке позволяют делать из него изделия сложной формы. Из него изготавливают тормозные колодки, угольники и прочие детали для машин и механизмов.