Термическая обработка металлов. Отжиг первого рода.

Отжиг – одна из основных операций термообработки, предназначенная для получения определенных свойств стали. Она может служить промежуточным этапом или выполнять функции окончательного технологического процесса. Цели, достигаемые с помощью различных видов отжига: снизить твердость, получить однородную структуру, удобную для последующих операций мехобработки, снять внутренние напряжения. В зависимости от температуры нагрева, времени и условий выдержки различают два основных типа отжига –I иII рода, которые, в свою очередь, подразделяются на подвиды.

Отжиг сталей первого рода – назначение, виды, температуры нагрева

В зависимости от температур нагрева и начального состояния сплава при различных видах отжига I рода протекают процессы гомогенизации, рекристаллизации, устранения остаточных напряжений, уменьшения твердости. Все эти процессы проходят в случаях нагрева сплавов и выше, и ниже температур, при которых осуществляются фазовые трансформации. Основные цели, достигаемые с помощью этого вида термической обработки, – ликвидация химической и физической неоднородности, возникающей после сварки, резки, обработки давлением, закалки.

Гомогенизационный (диффузионный) отжиг

Этот вид термообработки применяется для слитков из легированных марок. Он позволяет снизить дендритную или внутрикристаллитную неоднородность, повышающую склонность металла при обработке давлением к негативным явлениям, среди которых:

  • хрупкий излом;
  • неравномерность свойств в различных направлениях;
  • слоистый излом;
  • трещинообразование;
  • снижение пластичности и вязкости.

Режим диффузионного процесса:

  • нагрев до высоких температур (до +1200°C), при которых характеристики структуры сплава выравниваются по всем направлениям;
  • выдержка – 15-20 часов;
  • быстрое охлаждение заготовки до 800-820°C, а затем более медленное на воздухе.

В результате гомогенизационного термического процесса получают крупное зерно, которое измельчают дальнейшей обработкой давлением или термической обработкой.

Рекристаллизационный отжиг стали

Этот вид термообработки используется для стальных заготовок или полуфабрикатов после холодного деформирования или между такими операциями. Он заключается в нагреве до температур, превышающих температуры рекристаллизационных процессов, выдержке и охлаждении. Температура операции определяется содержанием углерода в сплаве:

  • 0,08-0,2% C–+680…700°C. Такие стали подвергают штамповке, прокатке, волочению.
  • Высокоуглеродистая легированная сталь – +680…740°C. Обычно это калиброванные прутки из хромсодержащих безникелевых и хромоникелевых марок. Выдержка – 0,5-1,5 ч.

Для снятия напряжений

Этот вид термообработки применяют для отливок, сварных изделий, заготовок после резки, в которых появляются остаточные напряжения в результате неоднородного охлаждения и пластических деформаций. Остаточные напряжения провоцируют целый ряд негативных последствий, среди которых – изменение размерных параметров и деформационные процессы во время хранения, транспортировки и эксплуатации изделий.

Операция для снятия напряжений осуществляется в следующих температурных интервалах:

  • Ходовые винты, зубчатые колеса, червяки: +570-600°C, выдержка 2-3 часа после основной механообработки, +160…+180°C, выдержка 2-2,5 часа после финишных мероприятий, проводимых для снятия напряжений после шлифовки.
  • Обработка для снятия сварных напряжений: +650-700°C.

Остаточные напряжения снижаются и при рекристаллизационном отжиге, при котором осуществляются фазовые трансформации.

Отжиг для снятия остаточных напряжений

Применяется для отливок, сварных соединений, деталей после обработки резанием и др., в которых в процессе предшествующих технологических операций из-за неравномерного охлаждения, неоднородной пластической деформации и т.п. возникли остаточные напряжения. Они могут вызвать изменение размеров, коробление и появление трещин в деталях при их обработке, эксплуатации и хранении. Отжиг проводится при температуре 160…700 0С с последующим медленным охлаждением.

После основной механической обработки детали высокой точности изготовления (ходовые винты, высоконапряженные зубчатые колеса, червяки и др.) подвергаются отжигу при 570…600 0С в течение 2…3 часов, а после окончательной механической обработки для снятия шлифовочных напряжений при температуре 160…180 0С 2…2,5 часа. Отжиг для снятия сварочных напряжений проводится при 650…700 0С.

Отжиг II рода > Дальше >

Отжиг II рода – процессы с фазовой перекристаллизацией

Отжиг II рода осуществляется только при температурах, лежащих выше порога начала фазовых трансформаций. Разновидности – полный, изотермический, неполный.

Полный

Полный отжиг заключается в нагреве выше критической температуры А3 (окончания перекристаллизации), выдержке до полного завершения фазовых трансформаций и медленном охлаждении. При нагреве до температур, превышающих на 30-50°Cточку А3, сталь после полного отжига приобретает однофазную аустенитную структуру с измельченным зерном, обеспечивающую повышенную вязкость и пластичность. При более высоких температурах аустенитное зерно увеличивается в размере, что снижает характеристики полуфабриката.

Температура нагрева и время выдержки в высокотемпературных условиях определяются типом заготовок, способом их укладки в печь, высотой садки. Для защиты стали от окисления и обезуглероживания отжиг проводится в защитных атмосферах.

Скорость охлаждения определяется химсоставом стали. Чем большую устойчивость переохлажденного перлита проявляет металл, тем медленнее его необходимо охлаждать. Поэтому углеродистые стали охлаждают со скоростью 100-150 градусов в час, а легированные стали значительно медленнее – со скоростью 40-60 градусов в час. После распада аустенита в ферритной области охлаждение может быть более интенсивным. Его можно реализовать даже на воздухе. Если цель этого вида т/о – снятие напряжений в деталях сложной конфигурации, то медленное охлаждение в печи осуществляют до достижения нормальных температур.

Полный отжиг обычно применяется для сортового проката, фасонных отливок, поковок из среднеуглеродистых сталей.

Изотермический отжиг

При этом виде термообработки нагрев осуществляется, как и для полного отжига. Отличие процесса – быстрое охлаждение до температур, расположенных ниже критической точки А1, обычно – это +660…680°C. При температуре, до которой сталь была быстро охлаждена, осуществляется изотермическая выдержка – до 6 часов, во время которой происходит полный распад аустенитной структуры. На следующем этапе полуфабрикаты охлаждаются на воздухе.

Плюс изотермического процесса по сравнению с полным – сокращение периода операции. Особенно это актуально для легированных марок. Еще одно преимущество – получение максимально однородной структуры по всему сечению заготовки. Заготовки, которые планируется обрабатывать резанием, отжигают при температурах 930-950°C, обеспечивающих небольшое укрупнение зерна и улучшение обработки режущим инструментом.

Чаще всего изотермическому отжигу подвергают: поковки и сортовой прокат небольших размеров, изготовленный из легированных марок. Для больших садок (от 20 т) изотермический отжиг не применяют, поскольку на отдельных участках садки превращения осуществляются при разных температурных условиях.

Для пружинной среднеуглеродистой стали с содержанием углерода 0,6-0,9% C применяют специализированную изотермическую обработку, называемую патентированием. Этот процесс служит для подготовки проволоки к многостадийному обжатию во время холодного волочения.

Первый этап – нагрев заготовок до температур, при которых осуществляется полная аустенизация структуры (примерно +900°C),второй – погружение в соли с температурами в интервале+450…+600°C.

Образовавшиеся после такой обработки структуры сорбита или тонкопластинчатого троостита обеспечивает:

  • возможность значительных обжатий при протяжке;
  • отсутствие обрывов при холодных деформациях;
  • высокую прочность после финишного волочения.

Неполный отжиг

При неполном отжиге металлоизделия нагревают немного выше критической температуры А1.Этот вид термообработки улучшает обработку резанием полуфабрикатов из заэвтектоидных (с содержанием углерода более 0,8%)легированных и углеродистых сталей.

Этапы неполного отжига в заэвтектоидных сталях:

  • Нагрев до температур выше точки А1на 10-30°C (обычно +750…770°C). Обеспечивает практически полную рекристаллизацию структуры. Во время этого процесса пластинчатый феррит приобретает сфероидальную форму. Поэтому такую операцию часто называют сфероидизацией.
  • Охлаждение до 600°C со скоростью до 60°C/час. Чем больше легирующих добавок в стали, тем медленнее должно быть охлаждение.
  • Остывание на воздухе от +600°C до нормальной температуры.

Нормализационный отжиг

Нормализация (нормализационный отжиг) считается промежуточным процессом между закалкой и отжигом, поскольку позволяет получать меньшую хрупкость металла, чем при закалке, и большую твердость, чем при других разновидностях отжига. Поэтому нормализация – процесс, широко распространенный для изготовления деталей машиностроения.

Нормализацию часто выполняют с прокатного нагрева. Температуры нагрева:

  • доэвтектоидные стали – до температур, превышающих А3 на 40-50°C;
  • заэвтектоидные стали – на 40-50°C выше точки Аm.

Далее осуществляют непродолжительную выдержку, во время которой завершаются фазовые превращения, охлаждение – на воздухе.

Нормализация сопровождается полной перекристаллизацией, измельчением структуры, образовавшейся после литья, ковки, прокатки, штамповки. Для низкоуглеродистых сталей нормализация востребована вместо отжига с целью получения повышенной твердости, улучшения производительности при обработке резанием, качества поверхности. Для некоторых легированных марок нормализация с охлаждением на воздухе заменяет процесс закалки. Нагрев для нормализации сортового горячекатаного проката часто осуществляется токами высокой частоты.

Разновидности отжига стали. Отжиг I и 2 рода.

⇐ ПредыдущаяСтр 4 из 15Следующая ⇒

Отжиг первого рода — процесс термической обработки, заключающийся в нагреве детали до температуры ниже фазовых превращений, выдержке при этой температуре и последующем медленном охлаждении с заданной скоростью.

Такой вид отжига применяется для снятия наклепа и внутренних напряжений у деталей, подвергнутых холодной деформации (холодная прокатка, холодная штамповка, волочение).

Температура рекристаллизационного отжига любого металла берется на 50—100° С выше температуры рекристаллизации данного металла. Температура рекристаллизации данного металла или сплава берется равной 0,4 температуры плавления (отсчитанной от абсолютного нуля).

Рекристаллизация заключается в том, что, начиная с некоторой температуры, при нагреве происходит интенсивное перемещение атомов в металле, что влечет за собой изменение формы и величины деформированных кристаллических зерен.

В процессе рекристаллизации происходят превращения, аналогичные тем, которые происходят при первичной кристаллизации и вторичной перекристаллизации, т. е. зарождаются новые центры кристаллов и происходит одновременно их рост. Взамен вытянутых, расплющенных зерен, образуются мелкие, сфероидальные зерна, повышаются пластические свойства, металлу возвращаются исходные свойства.

Температура рекристаллизационного отжига для разных металлов и сплавов различная: она зависит только от температуры рекристаллизации данного металла или сплава. Для всех сталей температура рекристаллизационного отжига всегда ниже температуры Аr1 (см. рис. 30).

Отжиг второго рода заключается в нагреве детали до температуры несколько выше критической, продолжительной выдержке при этой температуре и последующем медленном охлаждении с заданной скоростью. Отжиг применяется с целью снятия внутренних напряжений, улучшения обрабатываемости резанием, устранения структурной неоднородности и подготовки к последующей термической обработке.

Отжиг второго рода по условиям нагрева и выдержки подразделяется на полный, неполный и диффузионный;

по условиям охлаждения — на отжиг изотермический и нормализацию;

по условиям воздействия внешних факторов —на отжиг светлый и по условиям изменения структуры — на отжиг сфероидизирующий.

Диффузионный отжиг применяется в основном для слитков и крупных отливок из легированной стали для выравнивания химической неоднородности и уменьшения ликвации. Отжиг осуществляется путем нагрева на 150—250° С выше точки Ас3, длительной выдержки при этой температуре и последующего охлаждения с заданной скоростью.

При диффузионном отжиге получается крупнозернистая структура. Для получения мелкозернистой структуры после диффузионного отжига приходится производить обычный полный отжиг.

Полный отжиг производят путем нагрева стали на 30—50° С выше критической точки Ас3, выдержкой при этой температуре и медленным охлаждением до 400—500° С со скоростью 200° С в час углеродистых сталей, 100° С в час для низколегированных сталей и 50° С в час для высоколегированных сталей.

Структура стали после отжига равновесная, устойчивая.

Доэвтектоидная сталь имеет структуру: феррит и перлит. Эвтектоидная сталь имеет структуру перлит, а заэвтектоидная — перлит и цементит.

На конечную структуру стали оказывает большое влияние скорость охлаждения. Чем больше скорость охлаждения, тем мельче будут зерна перлита и тем меньше будет выделяться избыточного феррита или цементита.

Полному отжигу подвергают горячедеформируемую сталь — поковки, штампованные детали, прокат, а также слитки и фасонные отливки из простой и легированной стали.

Неполный отжиг производится путем нагрева стали до температуры, находящейся в интервале между точками Ас1 и Ac3. Условия охлаждения такие же, как и при полном отжиге. Неполный отжиг применяют преимущественно для заэвтектоидной стали, а также сортового проката и поковок из доэвтектоидной стали перед их механической обработкой, для снижения внутренних напряжений и улучшения обрабатываемости резанием.

Сфероидизирующий отжиг (на зернистый перлит) заключается в нагреве стали выше критической температуры Ас1 на 20—30° С, выдержке при этой температуре и медленном охлаждении (25— 30° С в час) до температуры 600° С. Цель такого отжига — перевод пластинчатого перлита в зернистый (глобулярный). Обычно сфероидизации подвергают эвтектоидные и заэвтектоидные стали, получая у них высокие значения относительного удлинения и относительного сужения.

Изотермический отжиг является разновидностью полного отжига. Он в основном применяется для легированных сталей. Экономически этот процесс очень выгоден, так как длительность обычного отжига 13—15 ч, а изотермического отжига 4—6 ч.

Процесс изотермического отжига заключается в следующем: деталь нагревают до температуры выше критической точки Ас3 на 30—50° С, выдерживают при этой температуре, после чего сравнительно быстро охлаждают до температуры 600—650° С. При этой температуре выдерживают, что необходимо для полного распада аустенита, после чего следует сравнительно быстрое охлаждение (рис. 32).

При всех видах отжига не допускается перегрев и пережог стали. Перегрев стали —брак исправимый: образовавшуюся крупнозернистую структуру при перегреве можно исправить повторным отжигом. Пережог стали —брак неисправимый, так как сильно окисленные границы кристаллических зерен теряют связь и деталь разрушается.

Закалка стали.

Закалка — распространенный процесс термической обработки стальных деталей. Она осуществляется путем нагрева деталей выше критической точки Ас3 (доэвтектоидной стали) или Ас1 (заэвтектоидной стали) на 30—50° С, выдержки при этой температуре и быстрого охлаждения. Основная цель закалки стали — получение высокой твердости, износостойкости и физико-механических свойств.

Резкое увеличение твердости и прочности в процессе закалки происходит из-за фазовых превращений структуры в процессе нагрева и охлаждения и образования неравновесных твердых структур—мартенсита, троостита и сорбита.

Качество закалки зависит от правильного выбора режима закалки (температуры нагрева, времени выдержки и скорости охлаждения). Температура нагрева под закалку зависит от химического состава стали. Для углеродистых сталей ее выбирают, пользуясь диаграммой состояния сплавов.

Нагрев деталей должен быть достаточно медленным, чтобы не возникли напряжения и трещины. Время нагрева зависит от химического состава стали, от формы и размеров деталей. Если нагрев производится в соляных ваннах, то скорость нагрева рекомендуется 0,5 мин на 1 мм сечения, если деталь нагревают в электрических печах, то время нагрева рекомендуется 15—20 мин на 1 мм сечения образца. Время выдержки должно быть достаточным, чтобы весь процесс превращения перлита в аустенит завершился полностью. Продолжительность выдержки обычно рекомендуют 25% общего времени нагрева.

Охлаждение детали является наиболее ответственным этапом операции. Скорость охлаждения должна быть такой, чтобы обеспечить получение нужной структуры —мартенсита, троостита или сорбита, т. е. обеспечить необходимые механические свойства обрабатываемой детали.

Критической скоростью закалки называется скорость охлаждения, обеспечивающая получение структуры —мартенсит или мартенсит и остаточный аустенит.

При скорости охлаждения меньше критической в структуре закаленной стали, наряду с мартенситом, будет находиться троостит, а при дальнейшем уменьшении скорости получаются структуры троостита или сорбита без мартенсита. Для получения структуры мартенсита требуется переохладить аустенит до температуры начала мартенситного превращения данной стали путем быстрого охлаждения стали (температура наименьшей устойчивости аустенита 550— 650° С).

В зоне температур мартенситного превращения, т. е. ниже 300° С, наоборот, выгоднее применять замедленное охлаждение, так как структурные напряжения успевают выравниваться, а твердость образовавшегося мартенсита при выдержке ниже точки Мк практически не снижается.

Для успешного проведения термической обработки правильный выбор закалочный среды имеет большое значение.

Для закалки среднеуглеродистых сталей можно рекомендовать воду с температурой 18° С, а для большинства остальных сталей — масло.

Способность стали закаливаться на определенную глубину называется прокаливаемостью. За глубину закалки принимают расстояние от поверхности закаленной детали до слоя с полумартенентной структурой (50% мартенсита и 50% троостита).

При охлаждении в процессе закалки в стали возникают внутренние напряжения —термические и структурные. Термические напряжения возникают в результате неравномерного охлаждения, а структурные напряжения — при превращении аустенита в мартенсит, что сопровождается значительным увеличением объема. В результате создания таких напряжений при закалке может возникать брак следующих видов: трещины, коробление, бочкообразность, изменение объема. Дефектами закалки являются также мягкие пятна, пониженные твердость и прочность стали, обезуглероживание, окисление, перегрев, пережог и др.

Правильное погружение деталей в закалочную среду помогает избежать образования некоторых дефектов (поводки, коробления,трещин и др.). При погружении деталей можно руководствоваться следующими положениями (рис. 33);:

а) длинные детали (сверла, развертки, протяжки) погружать в строго вертикальном положении;

б) детали, имеющие вогнутую поверхность, погружать в закалочную среду вогнутой поверхностью вверх, так как в противном случае образуется паровой мешок и в этом месте деталь не закалится;

в) детали, имеющие толстую и тонкие части, погружать в закалочную среду толстой частью;

г) тонкие и плоские детали погружать узкой стороной.

В зависимости от толщины закаленного слоя в деталях различают объемную и поверхностную закалку. В зависимости от скорости охлаждения различают закалку ступеньчатую и изотермическую, а в зависимости от метода нагрева —закалку с нагревом в печах, токами высокой частоты, газовым пламенем и в электрических печах. Объемная закалка (полная) с непрерывным охлаждением применяется для углеродистых сталей (охлаждение в воде) и для легированных сталей (охлаждение в масле). Этот способ заключается в том, что нагретую деталь погружают в закалочную среду и держат до полного охлаждения. Недостатком этого способа является возникновение больших термических напряжений из-за резкой разности температур нагретой детали и охлаждающей среды.

Ступенчатая закалка производится путем быстрого охлаждения последовательно в двух различных охлаждающих средах. Первой охлаждающей средой являются расплавленные соли или масло с температурой на 20—30° С выше температуры начала мартенситного превращения (точка Мн) для данной стали. В горячей среде деталям дают кратковременную выдержку. Выдержка в расплавленных солях или масле должна обеспечить выравнивание температуры по сечению детали, но не вызывать распада аустенита. Второй охлаждающей средой является воздух. При этом аустенит переходит в мартенсит. Достоинством такого способа закалки является уменьшение термических напряжений, а следовательно, трещин, поводки и коробления, а также хорошее сочетание высокой вязкости с прочностью. Ступенчатую закалку применяют для мелких деталей (сечением 8—10 мм) из углеродистой стали и для деталей (сечением до 30 мм) из легированной стали.

Изотермическая закалка так же, как и ступенчатая, производится в двух охлаждающих средах. Температура горячей среды (соляные, селитровые или щелочные ванны) различна: она зависит от химического состава стали, но всегда (на 20—100° С) выше точки мартенситного превращения для данной стали.

Время выдержки должно быть достаточным для полного превращения аустенита в игольчатый троостит. Окончательное охлаждение до комнатной температуры производится на воздухе.

Изотермическая закалка широко применяется для деталей из высоколегированных сталей. После изотермической закалки сталь приобретает высокие прочностные свойства, т. е. сочетание высокой вязкости с прочностью.

Светлая закалка стальных деталей при любой разновидности процесса закалки производится в специально оборудованных печах с применением защитных сред или в ваннах с расплавленными слоями. Ванны для нагрева деталей под закалку обычно делают из хлористого натрия при температуре на 30—50° С выше температуры точки Ас1_3.

Охлаждение деталей производят при температуре 180—200° С в ванне, состоящей из 75% едкого кали и 25% едкого натра, с добавлением 6—8% воды (от веса всей соли). Такая смесь обладает очень высокой закаливающей способностью.

После светлой закалки поверхности детали приобретают светлый серебристо-белый цвет. В этом случае отпадает необходимость в пескоструйной очистке деталей и достаточна промывка их в горячей воде.

Закалка с самоотпуском имеет широкое применение в инструментальном производстве. Процесс состоит в том, что детали выдерживаются в охлаждающей среде не до полного охлаждения, а в определенный момент извлекаются из нее с целью сохранения в сердцевине детали некоторого количества тепла, за счет которого производится последующий отпуск.

Мартенситное превращение.

Мартенситное превращение, полиморфное превращение, при котором изменение взаимного расположения составляющих кристалл атомов (или молекул) происходит путём их упорядоченного перемещения, причем относительные смещения соседних атомов малы по сравнению с междуатомным расстоянием[1]. Перестройка кристаллической решётки в микрообластях обычно сводится к деформации её ячейки, и конечная фаза мартенситного превращения может рассматриваться как однородно деформированная исходная фаза. Величина деформации мала (порядка 1—10 %) и соответственно мал, по сравнению с энергией связи в кристалле, энергетический барьер, препятствующий однородному переходу исходной фазы в конечную. Необходимое условие мартенситного превращения, которое развивается путём образования и роста областей более стабильной фазы в метастабильной, — сохранение упорядоченного контакта между фазами. Упорядоченное строение межфазных границ при малости барьера для однородного фазового перехода обеспечивает их малую энергию и высокую подвижность. Как следствие, избыточная энергия, необходимая для зарождения кристаллов новой фазы (мартенситных кристаллов), мала и при некотором отклонении от равновесия фаз становится сопоставимой с энергией дефектов, присутствующих в исходной фазе. Поэтому зарождение мартенситных кристаллов происходит с большой скоростью и может не требовать тепловых флуктуаций. Вследствие воздействия образовавшейся фазы на исходную фазу энергетический барьер для перемещения границы фаз существенно меньше, чем для однородного перехода; при небольших отклонениях от равновесия он исчезает — кристалл растет со скоростью порядка звуковой и без тепловой активации (превращение возможно при температурах, близких к абсолютному нулю).

Мартенситные превращения обнаружены во многих кристаллических материалах: чистых металлах, многочисленных сплавах, ионных, ковалентных и молекулярных кристаллах. Наиболее полно изучены мартенситные превращения в сплавах на основе железа, в частности в связи с закалкой стали. Большие перспективы практического применения имеют возможность большого обратимого формоизменения при мартенситных превращениях (например, создание «сверхупругих» сплавов и изделий, восстанавливающих первоначальную форму при нагреве после пластической деформации — «эффект памяти»), а также связь мартенситных превращений с появлением сверхпроводящих свойств в некоторых металлах. Мартенситные превращения (часто в сочетании с диффузионным перераспределением компонентов и изменением атомного порядка) составляют основу многочисленных структурных превращений, благодаря которым с помощью термической и механической обработки осуществляется направленное изменение свойств кристаллических материалов. Значительный вклад в изучение мартенситных превращений внесли работы советских учёных (Г. В. Курдюмов и его школа).

Отпуск стали.

Отпуск стали является завершающей операцией термической обработки, формирующей структуру, а следовательно, и свойства стали.

Отпуск заключается в нагреве стали до различных температур (в зависимости от вида отпуска, но всегда ниже критической точки Ac1), выдержке при этой температуре и охлаждении с разными скоростями.

Назначение отпуска —снять внутренние напряжения, возникающие в процессе закалки, и получить необходимую структуру. В зависимости от вида отпуска структура стали может быть мартенсит, троостит или сорбит отпуска.

В зависимости от температуры нагрева стальной закаленной детали различают три вида отпуска: высокий, средний и низкий.

Высокий отпуск производится при температурах нагрева выше 350—600° С, но ниже критической точки Ас1. В деталях образуется структура — сорбит отпуска; такой отпуск применяется для конструкционных сталей.

Средний отпуск производится при температурах нагрева 350— 500° С. В деталях образуется структура троостит отпуска; такой отпуск широко применяется для пружинной и рессорной сталей.

Низкий отпуск производится при температурах 150—250° С. Твердость детали после закалки почти не изменяется. Структура металла—мартенсит отпуска; низкий отпуск применяется для углеродистых и легированных инструментальных сталей, для которых необходимы высокая твердость (HRC 59—63) и износостойкость.

Кроме температуры нагрева, основным фактором при отпуске является выдержка. Скорость охлаждения в большинстве случаев значения не имеет.

⇐ Предыдущая4Следующая ⇒

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

Отжиг на зернистый перлит

Для получения структуры зернистого перлита осуществляется маятниковый отжиг, после которого эвтектоидные и заэвтектоидные стали обеспечивают хорошую обрабатываемость резанием, повышается cкорость процесса резания и улучшается качество поверхности. Этот вид т/о подходит для тонких листов перед холодной штамповкой и прутков перед холодным волочением. Результат – улучшение пластических свойств.

Режим маятникового отжига состоит из нескольких циклов нагрева выше критической точки А3 с медленным охлаждением до +670…+700°C. Три таких цикла позволяют получить структуру со 100% зернистого перлита. Финальное охлаждение – на воздухе.

Гомогенизационный отжиг

Гомогенизационный отжиг применяют для слитков и отливок, в которых в реальных условиях кристаллизации сформировалась химически неоднородная структура, включая дендритную ликвацию и наличие неравновесных эвтектик или других структурных составляющих (см. лекцию 3).

Целью гомогенизационного отжига является устранение химических неоднородностей в структуре и на этой основе повышение пластичности материала отливок, улучшение технологичности слитков при обработке давлением, повышение однородности структуры готовых изделий и улучшение комплекса их свойств.

Температура

нагрева при гомогенизационном отжиге должна быть предельно высокой, близкой к температуре плавления. Это позволит предельно сократить длительность выдержки. Однако верхний предел температурного режима отжига ограничивается развитием возможных нежелательных явлений, таких как чрезмерный рост размера зерна (
перегрев
) или оплавление границ зерен, обогащенных примесями, что сопровождается насыщением газами, образованием газовой и усадочной пористости, окислением и возникновением трещин (
пережог
).

Практика показывает, что в большинстве случаев температура отжига может быть предварительно определена как (0,90 — 0,95) от температуры плавления в Кельвинах. Затем для каждого конкретного сплава она уточняется на основе проводимых исследований структуры и свойств заготовок и готовых изделий. Оптимальной считается температура, которая при минимальных затратах (небольшой длительности отжига), обеспечивает достаточную технологичность материала заготовки при обработке давлением (прессовании, прокатке и др.) и заданный уровень свойств готовых изделий.

Длительность выдержки

при гомогенизационном отжиге зависит от типа сплава, технологии его получения, размеров заготовок и величины садки в нагревательном устройстве (печи). Она складывается из длительности прогрева изделия по толщине либо времени прогрева по сечению крупной садки; времени, необходимого для растворения неравновесных структурных составляющих в структуре сплава; и, наконец, времени, требуемого для устранения дендритной ликвации.

Длительность прогрева

определяется теплотехническими расчетами на основе решения дифференциальных уравнений теплопроводности либо экспериментальными методами путем термометрирования садки в печи.

Время, необходимое для растворения неравновесных структурных составляющих

, можно определить эмпирическим выражением

t = a× m b

,

где а

и
b
— константы для конкретного сплава и технологии его производства;
m
— толщина растворяющихся частиц неравновесных структурных составляющих. Значение величины
а
во многом определяется размером обрабатываемых заготовок и изделий, а значение показателя степени
b
— устойчивостью неравновесных фаз и диффузионными характеристиками системы. Для алюминиевых сплавов, например, величина
b
колеблется от 1,2 до 2,5, при средних значениях, равных 2, что свидетельствует о преимущественно диффузионной кинетике растворения неравновесных структурных составляющих в таких сплавах.

Третья

составляющая длительности выдержки при гомогенизационном отжиге определяется временем, затрачиваемым
на гомогенизацию твердого раствора
, характеризующегося в исходном состоянии либо после окончания растворения неравновесной структурной составляющей химической неоднородностью по сечению каждого зерна (внутрикристаллитной или дендритной ликвацией).

Скорость нагрева и скорость охлаждения —

дополнительные технологические параметры гомогенизационного отжига. Слитки и фасонные отливки, особенно сложной формы, следует нагревать медленно, обычно вместе с печью — во избежание возникновения термических напряжений, которые могут привести к образованию трещин или короблению изделий.

По этой же причине и охлаждение часто проводят медленно (вместе с печью). При назначении режимов охлаждения наибольшее значение уделяют учету развивающихся при охлаждении фазовых превращений. При этом применяют такие способы и скорости охлаждения, при которых в результате развития фазовых превращений дополнительно повышается пластичность сплавов. Например, после отжига стальных слитков охлаждение, как правило, проводят медленное (вместе с печью) со скоростью от нескольких градусов до нескольких десятков градусов в час. Образующиеся при этом перлитные структуры характеризуются достаточно грубопластинчатым строением с низкими прочностными, но высокими пластическими характеристиками.

Наоборот, слитки из термически упрочняемых алюминиевых сплавов после гомогенизационного отжига рекомендуется охлаждать ускоренно (например, на воздухе), за счет чего предотвращается выделение по границам зерен твердого раствора вторичных выделений обычно хрупких фазовых составляющих.

Отливки из литейных алюминиевых сплавов после продолжительной гомогенизирующей выдержки охлаждают очень быстро — в воде, что полностью предотвращает выделение избыточной фазы. Кроме того, такое сочетание гомогенизационного отжига и быстрого “закалочного” охлаждения исключает необходимость нового нагрева под закалку, сокращая общую длительность цикла получения отливок.

Иногда применяют посадку в печь для отжига горячих слитков, не до конца охлажденных в кристаллизаторе или изложнице, подачу слитков из печи отжига на операцию горячей прокатки, исключая операции охлаждения после отжига слитков и их нового нагрева под обработку давлением. Это уменьшает общую продолжительность отжига и повышает суммарную экономичность процессов получения изделий.

Легированные стали, содержащие

хром, молибден, ванадий, вольфрам, титан и др., отжигают при температурах 1050 — 1250°С в крупных садках с выдержкой от 8 до 20 ч. Нагрев и охлаждение очень медленные (до 10 — 20°/ч). Общая длительность цикла достигает 160 — 180 ч.

Алюминиевые сплавы

отжигают при температурах от 440 до 640 °С в зависимости от химического состава сплавов. Преимущественно эта температура на 5 — 40 °С ниже температуры неравновесного солидуса конкретного сплава. Так, для дуралюминов Д1 и Д16, температуры неравновесного солидуса которых равны 509 и 508 °С, интервалы температур гомогенизационного отжига соответственно составляют: 470 — 500 °С и 470 — 495 °С. Для высокопрочного сплава В95 с температурой неравновесного солидуса 475 °С температура отжига 440 — 470 °С. Для сплава системы алюминий — магний марки АМг6, имеющего температуру неравновесного солидуса 460 °С, температура отжига очень близка к солидусу- 450 — 460 °С. Для малолегированного сплава АМц соответственно 650 и 600 — 640 °С. Длительность выдержки при отжиге от нескольких часов до нескольких десятков часов. Для сплавов типа дуралюмин это время от 8 до 36 ч, для сплавов систем Al — Mg до 48 ч.

Охлаждение слитков или слитковых заготовок из алюминиевых сплавов обычно ведут на воздухе. При использовании печей непрерывного действия слитковые заготовки подают непосредственно к прокатным станам для горячей пластической деформации подстуженными с температуры отжига до температуры деформации. Отливки из алюминиевых сплавов охлаждают после гомогенизации в воде, совмещая отжиг с закалкой.

Магниевые сплавы

гомогенизируют при температурах 390 — 415 °С. Время выдержки 18 — 24 ч. Как и для алюминиевых сплавов, часто применяют совмещение гомогенизационного отжига с нагревом под обработку давлением (для слитков) и с закалкой (для отливок). Особенностью магниевых сплавов является их высокая химическая активность в контакте с кислородом воздуха, в связи с чем всегда существует опасность самовоспламенения. Поэтому нагрев слитков или отливок до температур отжига целесообразно вести в защитных средах, простейшей из которых является смесь воздуха с сернистым газом.

Как для алюминиевых, так и для магниевых сплавов иногда применяют высокотемпературную гомогенизацию (при температурах, на несколько градусов превышающих температуру неравновесного солидуса), что резко увеличивает степень гомогенизации слитков и отливок и не менее чем в 1,5 — 3 раза повышает пластичность сплавов.

Гомогенизационный отжиг применяют для слитков и отливок, в которых в реальных условиях кристаллизации сформировалась химически неоднородная структура, включая дендритную ликвацию и наличие неравновесных эвтектик или других структурных составляющих (см. лекцию 3).

Целью гомогенизационного отжига является устранение химических неоднородностей в структуре и на этой основе повышение пластичности материала отливок, улучшение технологичности слитков при обработке давлением, повышение однородности структуры готовых изделий и улучшение комплекса их свойств.

Температура

нагрева при гомогенизационном отжиге должна быть предельно высокой, близкой к температуре плавления. Это позволит предельно сократить длительность выдержки. Однако верхний предел температурного режима отжига ограничивается развитием возможных нежелательных явлений, таких как чрезмерный рост размера зерна (
перегрев
) или оплавление границ зерен, обогащенных примесями, что сопровождается насыщением газами, образованием газовой и усадочной пористости, окислением и возникновением трещин (
пережог
).

Практика показывает, что в большинстве случаев температура отжига может быть предварительно определена как (0,90 — 0,95) от температуры плавления в Кельвинах. Затем для каждого конкретного сплава она уточняется на основе проводимых исследований структуры и свойств заготовок и готовых изделий. Оптимальной считается температура, которая при минимальных затратах (небольшой длительности отжига), обеспечивает достаточную технологичность материала заготовки при обработке давлением (прессовании, прокатке и др.) и заданный уровень свойств готовых изделий.

Длительность выдержки

при гомогенизационном отжиге зависит от типа сплава, технологии его получения, размеров заготовок и величины садки в нагревательном устройстве (печи). Она складывается из длительности прогрева изделия по толщине либо времени прогрева по сечению крупной садки; времени, необходимого для растворения неравновесных структурных составляющих в структуре сплава; и, наконец, времени, требуемого для устранения дендритной ликвации.

Длительность прогрева

определяется теплотехническими расчетами на основе решения дифференциальных уравнений теплопроводности либо экспериментальными методами путем термометрирования садки в печи.

Время, необходимое для растворения неравновесных структурных составляющих

, можно определить эмпирическим выражением

t = a× m b

,

где а

и
b
— константы для конкретного сплава и технологии его производства;
m
— толщина растворяющихся частиц неравновесных структурных составляющих. Значение величины
а
во многом определяется размером обрабатываемых заготовок и изделий, а значение показателя степени
b
— устойчивостью неравновесных фаз и диффузионными характеристиками системы. Для алюминиевых сплавов, например, величина
b
колеблется от 1,2 до 2,5, при средних значениях, равных 2, что свидетельствует о преимущественно диффузионной кинетике растворения неравновесных структурных составляющих в таких сплавах.

Третья

составляющая длительности выдержки при гомогенизационном отжиге определяется временем, затрачиваемым
на гомогенизацию твердого раствора
, характеризующегося в исходном состоянии либо после окончания растворения неравновесной структурной составляющей химической неоднородностью по сечению каждого зерна (внутрикристаллитной или дендритной ликвацией).

Скорость нагрева и скорость охлаждения —

дополнительные технологические параметры гомогенизационного отжига. Слитки и фасонные отливки, особенно сложной формы, следует нагревать медленно, обычно вместе с печью — во избежание возникновения термических напряжений, которые могут привести к образованию трещин или короблению изделий.

По этой же причине и охлаждение часто проводят медленно (вместе с печью). При назначении режимов охлаждения наибольшее значение уделяют учету развивающихся при охлаждении фазовых превращений. При этом применяют такие способы и скорости охлаждения, при которых в результате развития фазовых превращений дополнительно повышается пластичность сплавов. Например, после отжига стальных слитков охлаждение, как правило, проводят медленное (вместе с печью) со скоростью от нескольких градусов до нескольких десятков градусов в час. Образующиеся при этом перлитные структуры характеризуются достаточно грубопластинчатым строением с низкими прочностными, но высокими пластическими характеристиками.

Наоборот, слитки из термически упрочняемых алюминиевых сплавов после гомогенизационного отжига рекомендуется охлаждать ускоренно (например, на воздухе), за счет чего предотвращается выделение по границам зерен твердого раствора вторичных выделений обычно хрупких фазовых составляющих.

Отливки из литейных алюминиевых сплавов после продолжительной гомогенизирующей выдержки охлаждают очень быстро — в воде, что полностью предотвращает выделение избыточной фазы. Кроме того, такое сочетание гомогенизационного отжига и быстрого “закалочного” охлаждения исключает необходимость нового нагрева под закалку, сокращая общую длительность цикла получения отливок.

Иногда применяют посадку в печь для отжига горячих слитков, не до конца охлажденных в кристаллизаторе или изложнице, подачу слитков из печи отжига на операцию горячей прокатки, исключая операции охлаждения после отжига слитков и их нового нагрева под обработку давлением. Это уменьшает общую продолжительность отжига и повышает суммарную экономичность процессов получения изделий.

Легированные стали, содержащие

хром, молибден, ванадий, вольфрам, титан и др., отжигают при температурах 1050 — 1250°С в крупных садках с выдержкой от 8 до 20 ч. Нагрев и охлаждение очень медленные (до 10 — 20°/ч). Общая длительность цикла достигает 160 — 180 ч.

Алюминиевые сплавы

отжигают при температурах от 440 до 640 °С в зависимости от химического состава сплавов. Преимущественно эта температура на 5 — 40 °С ниже температуры неравновесного солидуса конкретного сплава. Так, для дуралюминов Д1 и Д16, температуры неравновесного солидуса которых равны 509 и 508 °С, интервалы температур гомогенизационного отжига соответственно составляют: 470 — 500 °С и 470 — 495 °С. Для высокопрочного сплава В95 с температурой неравновесного солидуса 475 °С температура отжига 440 — 470 °С. Для сплава системы алюминий — магний марки АМг6, имеющего температуру неравновесного солидуса 460 °С, температура отжига очень близка к солидусу- 450 — 460 °С. Для малолегированного сплава АМц соответственно 650 и 600 — 640 °С. Длительность выдержки при отжиге от нескольких часов до нескольких десятков часов. Для сплавов типа дуралюмин это время от 8 до 36 ч, для сплавов систем Al — Mg до 48 ч.

Охлаждение слитков или слитковых заготовок из алюминиевых сплавов обычно ведут на воздухе. При использовании печей непрерывного действия слитковые заготовки подают непосредственно к прокатным станам для горячей пластической деформации подстуженными с температуры отжига до температуры деформации. Отливки из алюминиевых сплавов охлаждают после гомогенизации в воде, совмещая отжиг с закалкой.

Магниевые сплавы

гомогенизируют при температурах 390 — 415 °С. Время выдержки 18 — 24 ч. Как и для алюминиевых сплавов, часто применяют совмещение гомогенизационного отжига с нагревом под обработку давлением (для слитков) и с закалкой (для отливок). Особенностью магниевых сплавов является их высокая химическая активность в контакте с кислородом воздуха, в связи с чем всегда существует опасность самовоспламенения. Поэтому нагрев слитков или отливок до температур отжига целесообразно вести в защитных средах, простейшей из которых является смесь воздуха с сернистым газом.

Как для алюминиевых, так и для магниевых сплавов иногда применяют высокотемпературную гомогенизацию (при температурах, на несколько градусов превышающих температуру неравновесного солидуса), что резко увеличивает степень гомогенизации слитков и отливок и не менее чем в 1,5 — 3 раза повышает пластичность сплавов.

Ниже приведены источники, использованные при составлении конспекта по теме «Отжиг»

Лекции по курсу «Материаловедение». Лекция 13. Основы теории термической обработки стали (продолжение). Технологические особенности и возможности отжига и нормализации.

Отжиг, снижая твердость и повышая пластичность и вязкость за счет получения равновесной мелкозернистой структуры, позволяет: — улучшить обрабатываемость заготовок давлением и резанием; — исправить структуру сварных швов, перегретой при обработке давлением и литье стали; — подготовить структуру к дальнейшей термической обработке.

Характерно медленное охлаждение со скоростью 30…100°С/ч.

Отжиг первого рода

1. Диффузионный (гомогенезирующий). Применяется для устранения ликвации, выравнивания химического состава. В его основе – диффузия. В результате нагрева выравнивается состав, растворяются избыточные карбиды. Применяется, в основном, для легированных сталей.

2. Рекристаллизационный отжиг проводится для снятия напряжений после холодной пластической деформации. Продолжительность зависит от габаритов изделия.

3. Отжиг для снятия напряжений после горячей обработки (литья, сварки, обработки резанием, когда требуется высокая точность размеров). Температура нагрева выбирается в зависимости от назначения, находится в широком диапазоне: Т=160…700°С. Продолжительность зависти от габаритов изделия.

Отжиг второго рода

Предназначен для изменения фазового состава.

Является подготовительной операцией, которой подвергают отливки, поковки, прокат. Отжиг снижает твердость и прочность, улучшает обрабатываемость резанием средне- и высокоуглеродистых сталей.

В зависимости от температуры нагрева различают отжиг: 1. полный, с температурой нагрева на 30…50°С выше критической температуры А3. Тк=А3+(30…50)°С

Проводится для доэвтектоидных сталей для исправления структуры.

При такой температуре нагрева аустенит получается мелкозернистый, и после охлаждения сталь имеет такую же мелкозернистую структуру.

Нормализация – разновидность отжига.

Термическая обработка, при которой изделие нагревают до аустенитного состояния, на 30…50°С выше А3 или АСТ с последующим охлаждением на воздухе. Тк=А3+(30…50)°С Или Тк=АСТ+(30…50)°С

Нормализацию чаще применяют как промежуточную операцию, улучшающую структуру.

Для низкоуглеродистых сталей нормализацию применяют вместо отжига. Для среднеуглеродистых сталей нормализацию или нормализацию с высоким отпуском применяют вместо закалки с высоким отпуском. В этом случае механические свойства несколько ниже, но изделие подвергается меньшей деформации, исключаются трещины.

2. неполный, с температурой нагрева на 30…50°С выше критической температуры А1. Тк=А1+(30…50)°С

Применяется для заэвтектоидный сталей.

Неполный отжиг является обязательным для инструментальных сталей.

Богодухов С.И., Гребенюк В.Ф., Синюхин А.В. Курс материаловедения в вопросах и ответах: учебное пособие. 2-е изд., испр. и доп.. – М.: Издательство “Машиностроение”, 2005. – 288 с.

Отжиг состоит в нагреве металла, выдержке и последующем медленном охлаждении (вместе с печью). Отжиг приближает металл к равновесию.

Отжиг первого рода проводят для получения более равновесной, чем исходная, структуры, не связывая эту цель с наличием или отсутствием фазовой перекристаллизации. Примерами отжига первого рода являются рекристаллизационный отжиг, диффузионный отжиг.

При рекристаллизационном отжиге деформационной упрочненный металл нагревают несколько выше температурного порога рекристаллизации. В результате отжига материал приобретает такие же механические свойства, какие он имел до деформации.

Диффузионный (гомогенизирующий) отжиг проводят при нагреве до высоких температур (применительно к сталям – значительно выше Ас3 или Аст), предполагающих интенсивную диффузию атомов. Такому отжигу подвергают, например, отливки для устранения дендритной ликвации (гомогенизации сплава). При отжиге второго рода непременно протекает, хотя бы частичная, фазовая перекристаллизация. К отжигу второго рода относятся неполный отжиг, полный отжиг.

При неполном отжиге нагрев ведут до температуры Ас1 (ниже Ас3 или Аст). Происходит частичная перекристаллизация сплава (меняется перлитная соствляющая). Чаще неполный отжиг применяют для заэвтектоидных сталей (сфероидизирующий отжиг).

При полном отжиге сталь нагревают до Ас3 или Аст. Происходит полная перекристаллизация сплава.

Если при полной закалке (полном отжиге) охлаждение нагретой заготовки ведут на спокойном воздухе, то такая термическая обработка называется нормализацией.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]