Физические свойства мела и его применение

Такой знакомый всем школьный мелок, сколько веселых воспоминаний он хранит… Только вот за кажущейся его простотой прячется целая история развития планеты. «Как это может быть?» — спросите вы. Ответ на этот вопрос в данной статье. Вы не только изучите физические свойства мела и его применение, но и ознакомитесь с процессами образования в земной коре залежей известняковых осадочных пород, сформировавших современный облик Земли.

Минералы и породы биогенного происхождения

Примерно 130–65 млн лет назад, в меловом периоде мезозойской эры, моря древней планеты были заполнены планктонными и бентосными видами фораминифер, а также моллюсками, напоминавшими современных устриц, морских гребешков и наутилусов. В своих наружных скелетах и раковинах они накапливали соединения кальция, фосфора, магния и, отмирая, образовывали на дне водоемов наслоения известнякового ила. Под действием высокого давления и в результате химических процессов из него сформировались залежи известняка и мела. Физические свойства и состав этих осадочных пород очень похожи между собой, но имеют и черты различия. Геологические процессы, которые происходили на Земле, вызывали подъемы отдельных участков океанического дна и опускание материковых зон. К чему же это приводило?

О меди

Среди товаров, которыми торговали в далекие времена александрийские купцы, большой популярностью пользовалась «медная зелень». С помощью этой краски модницы подводили зеленые круги под глазами — в те времена это считалось проявлением хорошего вкуса. С древних времен люди верили в чудодейственные свойства меди и использовали этот металл при лечении многих недугов. Считалось, что медный браслет, одетый на руку, приносит своему владельцу удачу и здоровье, нормализует давление, препятствует отложению солей. Многие народы и в настоящее время приписывают меди целебные свойства. Жители Непала, например, считают медь священным металлом, который способствует сосредоточению мыслей, улучшает пищеварение и лечит желудочно-кишечные заболевания (больным дают пить воду из стакана, в котором лежат несколько медных монет). Один из самых больших и красивых храмов в Непале носит название «Медный». Был случай, когда медная руда стала… виновником аварии, которую потерпело норвежское грузовое судно «Анатина». Трюмы теплохода, направлявшегося к берегам Японии, были заполнены медным концентратом. Внезапно прозвучал сигнал тревоги: судно дало течь. Оказалось, что медь, содержащаяся в концентрате, образовала со стальным корпусом «Анатины» гальваническую пару, а испарения морской воды послужили электролитом. Возникший гальванический ток разъел обшивку судна до такой степени, что в ней появились дыры, куда и хлынула океанская вода.

Экскурс в геологию

Перераспределение поверхности литосферы и водной оболочки планеты обусловило появление горных цепей и хребтов, состоящих из осадочных пород. Это Альпы, горы Кавказа, Гималаи, Пиренеи. А скалы Дувра и вовсе состоят из чистого мела. Они придают английской береговой линии неповторимый вид и издавна служат для кораблей сигналом о приближении к туманному Альбиону. В России уникальные пейзажи на фоне меловых скал можно увидеть в поселке Сторожевом вблизи Воронежа. Ознакомившись с географией распространения биогенных горных пород, теперь самое время более подробно изучить физические свойства мела.

Где используется медь и ее сплавы

В рамках статьи трудно перечислить все области применения меди и ее сплавов. Их уникальные свойства используются в тяжелой и легкой промышленности, машино- и судостроении, авиации, медицине – практически во всех отраслях народного хозяйства и в быту. Каждая марка имеет свое применение, например, из сплава МО изготавливают токопроводящую продукцию, детали для бытовой техники и электроники, из марки М1 – металлопрокатные изделия, проволоку, сварочные электроды.


Подсвечник из меди

Применение меди и латуни в сантехнике (фитинги, переходники, запорная арматура) и строительстве (крыши, купола, водосточные системы и пр.) стало возможным, благодаря высокой теплопроводности и устойчивости к влаге. Благодаря привлекательному внешнему виду, бронза – наиболее используемый материал для скульптуры, а из мельхиора и нейзильбера чеканят разменные монеты, делают украшения. Медные трубопроводы – идеальное решение для стран, подверженных частым землетрясениям.

В электротехнике медь – незаменимый материал для производства проводов, силовых кабелей.

От чего зависят характерные особенности природных соединений

Внутреннее пространственное расположение атомов и молекул тела — кристаллическая решетка — полностью определяет агрегатное состояние, температуры плавления и кипения, плотность и т. д. Это параметры, которые относятся к физическим свойствам. Молекулярной формуле CaCO3 соответствует сразу несколько кристаллических соединений, содержащих в узлах решеток заряженные частицы — ионы. Это мрамор, арагонит, исландский шпат, известняк и мел. Такое явление в химии называется полиморфизмом и объясняется именно формой кристалла. Отсюда следует вывод: физические свойства меди, золота, мела, уксусной кислоты и любого другого вещества определяются его агрегатным состоянием, зависящим от внутреннего строения соединения.

Физические свойства меди

Цвет меди красный, в изломе розовый, при просвечивании в тонких слоях зеленовато-голубой. Металл имеет гранецентрированную кубическую решетку с параметром а = 3,6074 Å; плотность 8,96 г/см3 (20 °С). Атомный радиус 1,28 Å; ионные радиусы Cu+ 0,98 Å; Сu2+ 0,80 Å; tпл1083 °С; tкип 2600 °С; удельная теплоемкость (при 20 °С) 385,48 дж/(кг·К), т.е. 0,092 кал/(г·°С). Наиболее важные и широко используемые свойства меди: высокая теплопроводность — при 20 °С 394,279 вт/(м·К.), то есть 0,941 кал/(см·сек·°С); малое электрическое сопротивление — при 20 °С 1,68·10-8 ом·м. Термический коэффициент линейного расширения 17,0·10-6. Давление паров над медью ничтожно, давление 133,322 н/м2 (т.е. 1 мм рт.ст.) достигается лишь при 1628 °С. Медь диамагнитна; атомная магнитная восприимчивость 5,27·10-6. Твердость меди 350 Мн/м2 (т. е. 35 кгс/мм2); предел прочности при растяжении 220 Мн/м2 (т. е. 22 кгс/мм2); относительное удлинение 60%, модуль упругости 132·103 Мн/м2(т.е. 13,2·103 кгс/мм2).

Виды известняков

Специалисты могут различать до 4 форм вещества, в зависимости от его структуры и физических особенностей. Так, чистый карбонат кальция имеет мелкодисперсную зернистую поверхность, при контакте с поверхностью легко оставляет белый след и содержит всего до 5 % примесей, в основном в виде сернокислого магния или кальция. Глинистый песчаный мел бежево-белого цвета, тоже тонкозернистой структуры, однако имеет более высокую вязкость и содержит до 10 % посторонних соединений, например, сульфат кальция, оксид кремния или алюминия. Зеленый, желтый или серый меловый мергель имеет еще больше примесей, а мелоподобный известняк легко узнать по крупным кристаллам желтого или белого цвета с плотноцементирующими свойствами. Нужно отметить, что на уроках химии, отвечая на задание: «охарактеризуйте физические свойства мела», следует ориентироваться на первый вид вещества. Чистый, природный карбонат кальция, содержащий минимум балластных примесей, является веществом, которое предлагается ученикам в качестве изучаемого соединения.

Что такое медь

Даже школьники могут рассказать про медь: какое это вещество, какого цвета, что из нее делают. В таблице Менделеева этот химический элемент обозначается символом Cu, находится в 11-й группе 4 периода под №29. Ближайшие соседи – золото и серебро. По-английски медь называется copper, по-латыни – «купрум» (Cuprum), в честь острова Кипр, где были найдены крупные месторождения этого вещества. Происхождение русского названия неизвестно.

Объяснить кратко, что такое медь, можно так: это переходной мягкий металл красно-розового цвета, с атомным номером 29.

Как знакомить детей со свойствами мела

Впервые о карбонате кальция учащиеся узнают на вводных уроках химии, на которых дается понятие о чистых веществах и смесях, а также рассматриваются основные способы их разделения. Например, при проведении лабораторной работы учитель предлагает отделить друг от друга металлические опилки и древесную стружку с помощью магнита. Раствор сахара подвергают выпариванию и получают чистое кристаллическое вещество, а физические свойства мела и угля изучают после разделения двух веществ отстаиванием с последующим фильтрованием взвеси карбоната кальция в воде. Дидактический принцип преемственности и последовательности в изучении нового материала используется при ознакомлении учащихся с физическими явлениями и химическими реакциями. Проводится следующий опыт: в одну пробирку сливают растворы технической соды и хлорида кальция. Наблюдают помутнение раствора, а затем образование осадка. Это мел, его отфильтровывают и к полученному белому порошку по каплям добавляют хлоридную кислоту. Реакция идет с бурным выделением пузырьков углекислого газа. Как видим, программа по химии, 8 класс, физические свойства мела изучает вместе с главной химической особенностью вещества – его способностью к реакции с сильными кислотами, идущей с выделением CO2.

Применение меди

Современный рынок предлагает широкий спектр потребительских товаров с содержанием меди: от посуды до компьютеров. Медь используется для производства монет, электрических проводов, ювелирных изделий, столовых приборов, фитингов, чайников, прецизионных деталей, произведений искусства, музыкальных инструментов, трубопроводов и многого другого.

Для электрических токопроводящих кабелей и линий, печатных плат и интегральных схем, электрических компонентов (обмотки трансформаторов, дроссели индуктивности, анодные тела магнетронов) используется только чистая медь из-за ее очень хорошей электропроводности. Для воздушных линий используется бериллиевая медь.

Медь обладает высокой отражательной способностью в инфракрасном диапазоне и поэтому используется в качестве зеркал для лазерных установок на углекислом газе. Из-за ее хорошей теплопроводности, медь часто используется в качестве тепловых радиаторов.

Медь является частью многих сплавов, таких как золотисто-желтая латунь (с цинком), бронза (с оловом) и никелированное серебро (с цинком и никелем). Кованые сплавы (латунь и никелированное серебро) приводятся в желаемую форму с помощью пластического формования (горячая штамповка: прокатка, ковка или холодная штамповка: волочение проволоки, ковка, холодная прокатка, глубокая вытяжка), в то время как литые материалы (оружейная сталь, бронза) обычно трудно или невозможно формовать пластическим способом.

Объекты с серебристо-белым (похожим на нержавеющую сталь) внешним видом часто на самом деле представляют собой сплавы с высоким содержанием меди, так как цвет меди полностью исчезает при добавлении никеля. Современные монеты изготовлены из сплава меди, цинка, алюминия и олова. Соединения меди используются в цветных пигментах, в качестве тонеров, в медицинских препаратах и гальванических покрытиях. Благодаря благородному внешнему виду медь незаменима в мебельной промышленности и в области декора.

Характеристика углекислого кальция

Вещество, рассматриваемое нами, относится к группе средних солей. Оно, обычно, белого цвета, и, как мы говорили, является природной полускальной породой биогенного происхождения. В его состав входят частицы раковин, мелкие кристаллы кварцита, карбонаты магния и кальция, а также оксиды этих металлов. Мел впитывает и удерживает воду, при этом его прочность снижается. Он не растворяется в воде, а образует в ней мутную взвесь. При решении экспериментальных задач по химии физические свойства мела, в частности, его нерастворимость в воде, используются для обнаружения углекислого газа. При пропускании CO2 через известковую воду происходит ее помутнение вследствие образования нерастворимого осадка карбоната кальция. Данная реакция является качественной и применяется в аналитической химии.

Производство меди

Для производства меди из медного гравия (CuFeS2) первоначально получают так называемый медный камень (Cu2S с различным содержанием FeS) с содержанием меди около 70%. Для этого исходный материал нагревают с добавлением кокса и содержащихся в нем оксидов железа, зашлакованных кремнистыми заполнителями. Полученный шлак из силиката железа плавает в расплаве на поверхности и может быть легко слит. Далее медный камень перерабатывается в сырую медь (черная медь) с содержанием меди около 98%.

Для этого расплав заливают в конвертер и вдувают воздух. На первой стадии (продувка шлаком) содержащийся в нем сульфид железа обжаривается до оксида железа, и происходит связывание хлопьевидного кварца со шлаком, который можно слить. На втором этапе две трети оставшегося Cu2S окисляются до Cu2O. Затем оксид реагирует с оставшимся сульфидом с образованием неочищенной меди. Сырая медь (цементная медь) затем очищается электролитическим способом.

Медь мигрирует в виде ионов через электролит к катоду и осаждается там. Итоговое содержание меди — 99,99% с очень маленькой примесью других веществ. Менее благородные металлы этих примесей остаются растворенными в электролите, более благородные металлы (включая серебро и золото) образуют «осадок электролита» и далее обрабатываются отдельно.

Как повысить вязкость и пластичность известняка

К чему приводит наводнение залежей меловой породы подземными грунтовыми водами? Если влажность породы незначительна — не больше 2 %, то прочность кристаллов снижается. Однако при сильном намокании пластов CaCO3, например на 25 %, прочность вещества на сжатии возрастает почти в 3 раза. При этом физические свойства мела, в особенности пластичность и вязкость, усиливаются. Это сильно осложняет технологию его добычи. По этой причине верхние и более сухие слои месторождений, хоть и с низким содержанием чистого карбоната кальция, используются для его получения в промышленных масштабах.

Медь в природе

По подсчетам, процентное содержание меди в земной коре (4,7-5,5) ·10−3%. В свободном виде ее можно встретить редко, только в виде самородков (отдельные экземпляры весят до 400 т), образующихся путем окисления медных руд. В них ее процентное содержание составляет 98-100%. Есть и другие медьсодержащие минералы, их более 200. Среди них несколько особенно богатых на медь (в скобках указано содержание Cu):

  • голубовато-зеленая хризоколла (36%);
  • золотисто-зеленый халькопирит (34%);
  • зеленый малахит (57,4%);
  • индиговый и медно-красный борнит (55-65%);
  • свинцово-черный халькозин (80%);
  • всех оттенков зеленого брошантит (56%);
  • темно-красный куприт (до 89%).

В меденосных же рудах содержание Cu не превышает 6%.

Где и как применяют мел

Наибольшее количество вещества идет на получение негашеной извести, гидроксида кальция и углекислого газа. Для этого карбонат кальция выжигают, образуются оксид кальция и диоксид карбона. Первое вещество еще называют негашеной известью или кипелкой. Его соединяют с водой, процесс идет с выделением большого количества теплоты, в результате получают гашеную известь – важное сырье для строительной промышленности. В комплексе с песком и водой гидроксид кальция используют для оштукатуривания и скрепления кирпичей при возведении стен. Известкование закисленных почв – хорошо известный и экономически дешевый метод мелиоративных работ, повышающий плодородие грунта и не имеющий негативного влияния на видовой состав почвенных организмов.

В данной работе были изучены физические свойства мела и рассмотрены области его применения в промышленности и сельском хозяйстве.

Способы получения меди

В природе медь существует в соединениях и в виде самородков. Соединения представлены оксидами, гидрокарбонатами, сернистыми и углекислыми комплексами, а также сульфидными рудами. Самые распространённые руды — это медный колчедан и медный блеск. Содержание меди в них составляет 1-2%. 90% первичной меди добывают пирометаллургическим способом и 10% гидрометаллургическим.

1. Пирометаллургический способ включает в себя такие процессы: обогащение и обжиг, плавка на штейн, продувка в конвертере, электролитическое рафинирование. Обогащают медные руды методом флотации и окислительного обжига. Сущность метода флотации заключается в следующем: частицы меди, взвешенные в водной среде, прилипают к поверхности пузырьков воздуха и поднимаются на поверхность. Метод позволяет получить медный порошкообразный концентрат, который содержит 10-35% меди.

Окислительному обжигу подлежат медные руды и концентраты со значительным содержанием серы. При нагреве в присутствии кислорода происходит окисление сульфидов, и количество серы снижается почти в два раза. Обжигу подвергаются бедные концентраты, в которых содержится 8-25% меди. Богатые концентраты, содержащие 25-35% меди, плавят, не прибегая к обжигу.

Следующий этап пирометаллургического способа получения меди – это плавка на штейн. Если в качестве сырья используется кусковая медная руда с большим количеством серы, то плавку проводят в шахтных печах. А для порошкообразного флотационного концентрата применяют отражательные печи. Плавка происходит при температуре 1450 °С.

В горизонтальных конвертерах с боковым дутьём медный штейн продувается сжатым воздухом для того, чтобы произошли процессы окисления сульфидов и феррума. Далее образовавшиеся окислы переводят в шлак, а серу в оксид. В конвертере образуется черновая медь, которая содержит 98,4-99,4% меди, железо, серу, а также незначительное количество никеля, олова, серебра и золота.

Черновая медь подлежит огневому, а далее электролитическому рафинированию. Примеси удаляют с газами и переводят в шлак. В результате огневого рафинирования образуется медь с чистотой до 99,5%. А после электролитического рафинирования чистота составляет 99,95%.

2. Гидрометаллургический способ заключается в выщелачивании меди слабым раствором серной кислоты, а затем выделении металлической меди непосредственно из раствора. Такой способ применяется для переработки бедных руд и не допускает попутного извлечения драгоценных металлов вместе с медью.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]