Пирометаллургия — определение и способы получения металлов

отрасль добываемой металлургии

Пирометаллургия

это филиал добывающая металлургия. Он состоит из термической обработки минералов, металлургических руд и концентратов для осуществления физических и химических преобразований в материалах, позволяющих извлекать ценные металлы.[1] Пирометаллургическая обработка может производить продукты, пригодные для продажи, такие как чистые металлы, промежуточные соединения или сплавы, пригоден в качестве корма для дальнейшей переработки. Примеры элементов, извлекаемых пирометаллургическими процессами, включают оксиды менее реакционноспособных элементов, таких как утюг, медь, цинк, хром, банка, и марганец.[2]

Пирометаллургические процессы обычно делятся на одну или несколько из следующих категорий:[нужна цитата

]

  • кальцинирование,
  • жарка
  • плавка
  • очистка.

Большинство пирометаллургических процессов требуют ввода энергии для поддержания температуры, при которой происходит процесс. Энергия обычно вырабатывается в виде горения или электрического тепла. Когда в сырье присутствует достаточное количество материала для поддержания температуры процесса исключительно за счет экзотермической реакции (т.е. без добавления топлива или электрического тепла), процесс называют «автогенным». При переработке некоторых сульфидных руд используется экзотермичность их горения.

Жарка

Основная статья: Обжиг (металлургия)

Обжиг состоит из термических реакций газ-твердое тело, которые могут включать окисление, восстановление, хлорирование, сульфатирование и пирогидролиз.

Самый распространенный пример обжига — окисление сульфидных руд металлов. Сульфид металла нагревают в присутствии воздуха до температуры, которая позволяет кислороду воздуха реагировать с сульфидом с образованием газообразного диоксида серы и твердого оксида металла. Твердый продукт от обжарки часто называют «кальцинировать

«. При окислительном обжиге, если температура и газовые условия таковы, что исходное сульфидное сырье полностью окисляется, процесс известен как»
мертвая обжарка
«. Иногда, как в случае предварительной обработки сырья отражательной или электроплавильной печи, процесс обжига выполняется с количеством кислорода меньше, чем требуется для полного окисления сырья. В этом случае процесс называется«
частичное обжаривание
«потому что сера удаляется только частично. Наконец, если температура и газовые условия регулируются так, что сульфиды в сырье реагируют с образованием сульфатов металлов вместо оксидов металлов, процесс известен как»
сульфатионная обжарка
«. Иногда температура и газовые условия могут поддерживаться таким образом, что смешанное сульфидное сырье (например, сырье, содержащее как сульфид меди, так и сульфид железа) реагирует так, что один металл образует сульфат, а другой образует оксид, процесс известен как «
выборочная обжарка
» или же «
селективное сульфатирование
«.

Общие способы получения металлов

Значительная химическая активность металлов (взаимодействие с кислородом воздуха, другими неметаллами, водой, растворами солей, кислотами) приводит к тому, что в земной коре они встречаются главным образом в виде соединений: оксидов, сульфидов, сульфатов, хлоридов, карбонатов и т. д. В свободном виде встречаются металлы, расположенные в ряду напряжений правее водорода (Аg, Нg, Рt,Аu, Сu), хотя гораздо чаще медь и ртуть в природе можно встретить в виде соединений.

Минералы и черные породы, содержащие металлы и их соединения, из которых выделение чистых металлов технически возможно и экономически целесообразно, называют рудами

.

Получение металлов из руд — задача металлургии.

Металлургия

— это и наука о промышленных способах получения металлов из руд, и отрасль промышленности.

Любой металлургический процесс — это процесс восстановления ионов металла с помощью различных восстановителей. Суть его можно выразить так:

М n+ + ne−→M

Чтобы реализовать этот процесс, надо учесть активность металла, подобрать восстановитель, рассмотреть технологическую целесообразность, экономические и экологические факторы.

В соответствии с этим существуют следующие способы получения металлов:

• пирометаллургический;

• гидрометаллургический;

• электрометаллургический.

Пирометаллургия

Пирометаллургия — восстановление металлов из руд при высоких температурах с помощью углерода, оксида углерода (II), водорода, металлов — алюминия, магния.

Например, олово восстанавливают из касситерита SnО2, а медь — из куприта Cu2O

прокаливанием с углем (коксом):

SnО2+ 2С = Sn + 2СО ↑; Cu2O + С = 2Cu+ СО ↑

Сульфидные руды предварительно подвергают обжигу при доступе воздуха, а затем полученный оксид восстанавливают углем:

2ZnS + 302 = 2ZnО + 2SO2 ↑; ZnО + С = Zn + СО ↑ сфалерит (цинковая обманка)

Из карбонатных руд металлы выделяют также путем прокаливания с углем, т. к. карбонаты при нагревании разлагаются, превращаясь в оксиды, а последние восстанавливаются углем:

FeСO3 = FеО + СO2 ↑ ; FеО + С = Fе + СО ↑ сидерит (шпатовый железняк)

Восстановлением углем можно получить Fе, Сu, Zn, Сd, Ge, Sn, Рb и другие металлы, не образующие прочных карбидов (соединений с углеродом).

В качестве восстановителя можно применять водород или активные металлы:

1) МоO3 + ЗН2 = Мо + ЗН2O (водородотермия)

К достоинствам этого метода относится получение очень чистого металла.

2) TiO2+ 2Мg = Тi + 2МgO (магнийтермия)

ЗМnO2 + 4Аl = ЗМn + 2Аl2O3 (алюминотермия)

Чаще всего в металлотермии используют алюминий, теплота образования оксида

которого очень велика (2А1 + 1,5 O2 = Аl2O3 + 1676 кДж/моль). Электрохимический ряд напряжений металлов нельзя использовать для определения возможности протекания реакций восстановления металлов из их оксидов. Приближенно установить возможность этого процесса можно на основании расчета теплового эффекта реакции (Q), зная значения теплот образования оксидов:

Q= Σ Q1 — Σ Q 2 ,

Плавка

Основная статья: Плавка

Плавка включает термические реакции, в которых по крайней мере один продукт представляет собой расплавленную фазу.

Оксиды металлов могут быть плавил путем нагревания с кокс или же уголь (формы углерод), а Восстановитель который высвобождает кислород в виде углекислый газ оставляя очищенный минерал. Забота о производстве углекислый газ это только недавнее беспокойство после выявления расширенных парниковый эффект.

Карбонатные руды также выплавляют с использованием древесного угля, но иногда необходимо кальцинированный первый.[нужна цитата

]

Другие материалы могут быть добавлены как поток, способствуя плавлению оксидных руд и способствуя образованию шлак, поскольку флюс реагирует с примесями, такими как кремний соединения.[нужна цитата

]

Плавка обычно происходит при температуре выше точки плавления металла, но процессы значительно различаются в зависимости от используемой руды и других факторов.[нужна цитата

]

Пирометаллургия

Пи́рометаллу́ргия
— совокупность металлургических процессов, протекающих при высоких температурах. Это отрасль металлургии, связанная с получением и очищением металлов и металлических сплавов при высоких температурах, в отличие от гидрометаллургии, к которой относятся низкотемпературные процессы.

Описание[ | ]

Это химические процессы, протекающие в металлургических агрегатах при высоких (800—2000°С) температурах. Поэтому пирометаллургию иногда называют «химией высоких температур».

Часто химические реакции сопровождаются изменением агрегатного состояния реагирующих веществ: плавлением, возгонкой, испарением образующихся металлов или их соединений.

В таких процессах взаимодействия могут протекать между твёрдой, жидкой (расплавы) и газообразной фазами в любых сочетаниях.

Пирометаллургическими процессами являются процессы агломерации металлургического сырья, плавки шихтовых материалов, изготовления сплавов, рафинирования металлов. В частности, это — обжиг, доменная плавка, , плавка в конвертерах, дуговых и индукционных печах.Пирометаллургия — основа производства чугуна, стали, свинца, меди, цинка и др.

В пирометаллургии часто применяется восстановление углеродом — в тех случаях, когда восстанавливаемые металлы не образуют устойчивых карбидов, помимо указанных выше, к таким металлам относятся германий, кадмий, олово и другие. В случаях образования восстанавливаемыми металлами устойчивых карбидов вместо восстановления углеродом часто применяется металлотермия[1].

Пирометаллургия — основная и наиболее древняя область металлургии. С давних времён до конца 19 столетия производство металлов базировалось почти исключительно на пирометаллургических процессах.

На рубеже 19 и 20 столетий промышленное значение приобрела другая крупная ветвь металлургии — гидрометаллургия.

Однако пирометаллургия продолжает сохранять господствующее положение как по масштабам производства, так и по разнообразию процессов.

В начале 20 столетия вместе с пламенными способами нагрева в металлургии начали использоваться разные виды электрического нагрева (дуговой, индукционный и др.); приблизительно в это же время в промышленности был внедрён электролиз расплавленных химических соединений (производство алюминия и других цветных металлов).

Во 2-й половине 20 столетия получили распространение плазменная плавка металлов, зонная плавка и . Металлургические процессы, основанные на использовании электрического тока, выделяют в самостоятельную область пирометаллургии — электрометаллургию.

Основные процессы[ | ]

Основным процессом пирометаллургии является рудная плавка, которая проводится при таких высоких температурах, когда продукты химического взаимодействия расплавляются, образуя две жидкие фазы — металлическую или сульфидную и шлаковую. Различают восстановительную и окислительную плавки.

Определяющий процесс восстановительной рудной плавки — это восстановление оксидов металла с получением в конечном итоге расплава металла или его сплава с другими элементами. Типичной восстановительной плавкой является получение чугуна в доменных печах. Восстановительные процессы являются также главными при плавке марганцевых, окисленных никелевых, свинцовых, титановых руд.

Основными реагментами-восстановителями служат углерод, оксид углерода и водород. Оксид углерода образуется в самой печи при неполном горении углерода; основное количество водорода получается в результате разложения вдуваемого в печь природного газа.

Разновидностью восстановительных плавок является металлотермическое получение металлов, при котором в качестве восстановителя какого-то металла (Mn, Cr, V и др.) используется другой металл — с большим сродством к кислороду: Ca; Mg; Al, а также Si. Одним из достоинств металлотермического восстановления является получение металлов, не загрязненных углеродом или водородом.

Типичной окислительном рудной плавкой является переработка в шахтных печах богатых медных сульфидных руд. В ходе плавки окисляется основная доля серы сульфидных минералов, в результате чего выделяется значительное количество тепла. Основным целевым продуктом плавки является расплав сульфидов FeS и Cu2S — штейн.

Чугун и штейн рудных плавок являются, по-существу, полупродуктами, которые требуют дополнительной обработки. Такая обработка заключается в продувке расплавов воздухом или чистым кислородом, в результате чего содержащиеся в сплавах примеси окисляются и переходят либо в шлак (SiO2; MnO; FeO и др.), либо в газ (СО; SO2). Процесс называется конвертированием.

Аналогичным конвертированию является фьюминг-процесс — продувка газом шлаковых расплавов. Отличие его от конвертирования состоит в том, что металлический расплав продувают окислительным газом, а при фьюминговании шлака восстановительным.

А во-вторых, продукты окисления металлического расплава — оксиды металлов — образуют вторую жидкую фазу — шлак, а продукты фьюмингования шлака — восстановленные легколетучие металлы (или сульфиды) в парообразном состоянии удаляются из реакционного пространства газовым потоком[2].

Литература[ | ]

Гидрометаллургия

Гидрометаллургия — это восстановление металлов из их солей в растворе.

Процесс проходит в два этапа: 1) природное соединение растворяют в подходящем реагенте для получения раствора соли этого металла; 2) из полученного раствора данный металл вытесняют более активным или восстанавливают электролизом. Например, чтобы получить медь из руды, содержащей оксид меди СuО, ее обрабатывают разбавленной серной кислотой:

СuО + Н2SО4 = СuSO4 + Н2

Затем медь либо извлекают из раствора соли электролизом, либо вытесняют из сульфата железом:

СuSO4. + Fе = Сu + FеSO4

Таким образом, получают серебро, цинк, молибден, золото, уран.

Виды сплавов

Несмотря на такое многообразие сплавов, наибольшее значение для людей играют те, основу которых составляет железо и алюминий. Именно они чаще всего встречаются в повседневной жизни. Виды сплавов бывают различными. Причем их разделяют по нескольким критериям. Так применяются различные способы изготовления сплавов. По данному критерию их делят на:

• Литые, которые получены путем кристаллизации расплава смешанных компонентов.

• Порошковые, созданные при помощи прессования смеси порошков и последующего спекания при высокой температуре. Причем зачастую компонентами таких сплавов являются не только простые химические элементы, но и их различные соединения, такие как карбиды титана или вольфрама в твердых сплавах. Их добавление в тех или иных количествах изменяет свойства металлических материалов.

Способы получения сплавов в виде готового изделия или заготовки разделяют на:

• литейные (силумин, чугун);

• деформируемые (стали);

• порошковые (титан, вольфрам).

Свойства руд

Отвечать на вопрос: какими свойствами обладает железная руда, не совсем просто. Хотя бы потому, что перечень свойств зависит от процента данного металла в руде и количества посторонних примесей. К примеру, красный железняк, содержащий гематит (Fe2O3), содержит в себе целых 70% железа от общего количества.

В общем и целом, кстати, целесообразной добычей железа считается только та, где в рудах содержится от 40% железа и выше. Данная цифра действительно дает понять, что железо распространено в окружающем мире многократно больше других элементов. К примеру, для того же урана, содержание его в руде в количестве 2% считалось бы небывалой удачей…

Но вернемся к нашему красному железняку. Давая характеристику железной руде, можно сказать, что красный железняк представляет собой диапазон от порошкового вещества до плотного.

Лимонит (он же – бурый железняк), также является рудой железа, однако она представляет собой пористую и рыхлую породу, содержащую весомые доли фосфора и марганца. Пустой породой у него часто выступает глина. В силу чего, кстати, довольно легко поддается извлечению железа. Потому из него часто делают чугун.

Производство и потребление металлов

Распространение и сферы применения

Из наиболее ценных и важных для современной техники металлов лишь немногие содержатся в земной коре в больших количествах: алюминий (8,9 %), железо (4,65 %), магний (2,1 %), титан (0,63 %). Природные ресурсы некоторых весьма важных металлов измеряются сотыми и даже тысячными долями процента. Особенно бедна природа благородными и редкими металлами.

Производство и потребление металлов в мире постоянно растёт. За последние 20 лет ежегодное мировое потребление металлов и мировой металлофонд удвоились и составляют, соответственно, около 800 млн тонн и около 8 млрд тонн. Изготовленная с использованием черных и цветных металлов доля продукции в настоящее время составляет 72—74 % валового национального продукта государств. Металлы в XXI веке остаются основными конструкционными материалами, так как по своим свойствам, экономичности производства и потребления не имеют себе равных в большинстве сфер применения.

Из 800 млн т ежегодно потребляемых металлов более 90 % (750 млн т) приходится на сталь, около 3 % (20—22 млн т) на алюминий, 1,5 % (8—10 млн т) — медь, 5—6 млн т — цинк, 4—5 млн т — свинец (остальные — менее 1 млн т). Масштабы производства таких цветных металлов, как алюминий, медь, цинк, свинец, измеряются в млн т/год; таких как магний, титан, никель, кобальт, молибден, вольфрам- в тыс. т, таких как селен, теллур, золото, платина — в тоннах, таких как иридий, осмий и т. п. — в килограммах.

В настоящее время основная масса металлов производится и потребляется в таких странах как США, Япония, Китай, Россия, Германия, Украина, Франция, Италия, Великобритания и другие.

Благодаря своим физическим свойствам (твёрдость, высокая плотность, температура плавления, электропроводность, звукопроводность, внешний вид и другим) они находят применение в различных областях. Применение металлов зависит от их индивидуальных свойств:

  • Железо и сталь обладают твердостью и прочностью. Благодаря этим их свойствам они широко используются в строительстве.
  • Алюминий ковок, хорошо проводит тепло, обладает высокой прочностью при сверхнизких температурах. Он используется для изготовления кастрюль и фольги, в криогенной технике. Благодаря своей низкой плотности — при изготовлении частей самолётов.
  • Медь обладает пластичностью и высокой электропроводностью. Именно поэтому она нашла своё широкое применение в производстве электрических кабелей и энергетическом машиностроении.
  • Золото и серебро очень тягучи, вязки и инертны, обладают высокой стоимостью, используются в ювелирном деле. Золото также используется для изготовления неокисляемых электрических соединений.

Сплавы и их применение

В чистом виде металлы применяются незначительно. Гораздо большее применение находят сплавы металлов, так как они обладают особыми индивидуальными свойствами. Наиболее часто используются сплавы алюминия, хрома, меди, железа, магния, никеля, титана и цинка. Много усилий было уделено изучению сплавов железа и углерода. Обычная углеродистая сталь используется для создания дешёвых, высокопрочных изделий, когда вес и коррозия не критичны.

Нержавеющая или оцинкованная сталь используется, когда важно сопротивление коррозии. Алюминиевые и магниевые сплавы используются, когда требуются прочность и легкость.. Медно-никелевые сплавы (такие, как монель-металл) используются в коррозионно-агрессивных средах и для изготовления ненамагничиваемых изделий

Суперсплавы на основе никеля (например, инконель) используются при высоких температурах (турбонагнетатели, теплообменники и т. п.). При очень высоких температурах используются монокристаллические сплавы.

Медно-никелевые сплавы (такие, как монель-металл) используются в коррозионно-агрессивных средах и для изготовления ненамагничиваемых изделий. Суперсплавы на основе никеля (например, инконель) используются при высоких температурах (турбонагнетатели, теплообменники и т. п.). При очень высоких температурах используются монокристаллические сплавы.

Оборудование

Для получения и обработки применяется разное оборудование:

  1. Для термической обработки — печи, плавильни, горны.
  2. Для изменения шероховатостей поверхностей — шлифовальные станки, пескоструи.
  3. Для создания углублений, обработки кромок, торцов — долбежные, сверлильные, фрезеровальные станки.
  4. Для придания простой или сложной цилиндрической формы — токарные станки.
  5. Для разрезания заготовок — пилы, лазерные или гидроабразивные резаки.

Современное оборудование оснащается автоматическими системами управления, что ускоряет производство, минимизирует физические затраты со стороны человека.

Самодельный горн (Фото: Instagram / vetal7070)

Производство меди в России и мире

По данным аналитических агентств Российская Федерация уверенно занимает пятую позицию среди стран, занимающихся добычей и получением чистой меди. Производство меди в России в среднем за год составляет 860 тысяч тонн. Основу современной структуры производства меди составляют три крупных холдинга: ОАО «ГМК» Норильский никель» («Норникель»), ООО «УГМКХолдинг» (УГМК) и ЗАО «Русская медная компания» (РМК). Эти компании осуществляют полный цикл производства от добычи руды до изготовления готовых слитков, проката и проволоки. В каждый холдинг входит несколько предприятий, оснащённых самыми совершенными технологиями производства. Благодаря динамическому развитию в прошлом году удалось повысить производство меди на семь процентов.

Мировое производство меди достаточно консолидировано. Почти 35% этого металла производиться пятью крупнейшими компаниями. К ним относятся:

  • Codelco (Чили).
  • Freeport-McMoRan (США).
  • Glencore (Швейцария).
  • BHP Billiton (Австралия).
  • Southern Copper (Мексика).

Эти компании почти 80% меди получают из первичного сырья (то есть осуществляют полный цикл переработки) и 20% производят в результате переработки поступающего лома. В Европе наиболее крупными производителями меди являются: Польша, Португалия и Болгария. Каждый завод способен осуществлять выпуск широкого ассортимента медной продукции. Несмотря на современный кризис, медь по-прежнему остаётся востребованным металлом. Одним из серьёзных недостатков, присущих этому производству являются экологические проблемы. Оценка выбросов на медеплавильных заводах показали высокий уровень загрязнения окружающего воздуха. В его составе присутствует большое количество вредных для здоровья химических соединений (кадмия, ртути, мышьяка, свинца, оксидов азота и углерода).

Особенности медных руд

Медьсодержащие руды характеризуются как многоэлементные. Наиболее часто встречающиеся соединения бывают с:

  • железом;
  • серой;
  • медью.

В незначительной концентрации могут присутствовать:

  • никель;
  • золото;
  • платина;
  • серебро.

Месторождения во всем мире имеют примерно одинаковый набор химических элементов в составе руды, отличаются лишь их процентным соотношением. Чтобы получить чистый металл, используют различные промышленные способы. Почти 90% металлургических предприятий используют одинаковый метод производства чистой меди – пирометаллургический.

Один из самых больших карьеров по добыче руди приносит 17 миллионов тонн меди в год

Схема этого процесса позволяет также получать металл из вторичного сырья, что для промышленности является существенным плюсом. Поскольку месторождения относятся к группе не восполняемых – запасы с каждым годом уменьшаются, руды беднеют, а их добыча и производство становится дорогим. Это, в конечном счете, влияет на цену металла на международном рынке. Кроме пирометаллургического метода, существуют еще способы:

  • гидрометаллургический;
  • метод огневого рафинирования.
Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]