Сколько расходуется кислорода при сварке?
Кислород позволяет довести температуру пламени до нужной при проведении сварки. Газопламенная обработка позволяет получить высокую эффективность проведения работ и хороший конечный результат. При проведении работ применяется газообразный кислород.
Кислород позволяет довести температуру пламени до нужной при проведении сварки. Газопламенная обработка позволяет получить высокую эффективность проведения работ и хороший конечный результат. При проведении работ применяется газообразный кислород.
Уровень расхода газа будет зависеть от целого ряда параметров, среди которых толщина проволоки и металла, а также тип шва. Далее мы приведем таблицу расхода газа при использовании наиболее распространенной смеси с ацетиленом.
Толщина металла, мм
Для того чтобы узнать подробности, свяжитесь с . Наши специалисты ответят на вопросы о расходе конкретного газа, а также об особенностях его использования в различных условиях. Мы поставим вам баллон нужного типа по наиболее выгодным ценам.
источник
Как происходит резка металла газом
Наиболее распространенный способ для осуществления резки металла сегодня – автогенный, его еще называют газовый или кислородный. Его суть сводится к тому, что под воздействием пламени газа, металл нагревается и начинает плавиться, а под воздействием струи кислорода происходит его сгорание, делая узкий паз.
В качестве подогревателя используют ацетилен, пропан-бутан, природный, коксовый газ.
Поверхностная газовая резка применяется в случаях, когда необходимо удаление слоев металла, чтобы образовались шлицы, канавки и другие конструктивные элементы.
Разделительный вид предусматривает выполнения сквозного реза, для получения необходимого количества металлических элементов, частей. Прожиг металла для получения глубоких или сквозных отверстий называется резкой копьем.
Таблица толщин реза и расхода газа для мундштуков типа NXВ результате этого получается разрез. Кислород подается под большим давлением, Часто оно достигает 12 атмосфер, такая струя даже без подачи огня может разрезать кожу.
Строение режущего аппарата сконструировано таким образом:
- газовая горелка;
- два баллона;
- смеситель;
- регулятор давления;
- шланги.
Газовая горелка состоит из головки с несколькими соплами, в основном достаточно трех. Через два боковых подается горючее вещество, через третий, который размещается посредине, подается кислород. Баллоны предназначены непосредственно для газа и кислорода, в зависимости от объемов предполагаемой работы подбираются соответствующие по вместительности баллоны.
Газовая горелка
Для обеспечения одного часа непрерывной работы будет расходоваться в среднем 0,7 м3 ацетилена (1 м3 пропана) и 10 м3 кислорода. В целом необходимое количество исходного сырья будет зависеть от плотности металла и необходимой температуры для его нагрева. Сократить расход пропана можно за счет специальных насадок на сопла, которые фиксируют подачу газа в определенном направлении, чем ближе будет подача к кислородной струе, тем возрастет расход топлива.
Шланги необходимы для подачи кислорода и горючего вещества из баллонов в смеситель, их еще называют рукавами. Материал, из которого сделаны шланги – двухслойная резина, между слоями каркас, выполненный из хлопчатобумажной нити. Диаметр – до 12 мм, возможность эксплуатации при температуре воздуха не ниже -35 оС.
Регулятор давления необходим для обеспечения разных режимов и скоростей резки. Подавая меньшее количество топлива можно обеспечить низкую температуру, которая необходима для тонкой стали или металла невысокой прочности, а также сократить расход сырья.
Еще одной важной функцией редуктора является поддержание равномерного уровня давления. Если в процессе резки будет прервана подача газа, металл быстро охладеет и дальнейшая обработка станет невозможной.
Резка металла пропаном и кислородом
Необходимое оборудование
Резак Р101
Самым первым резаком было устройство Р1-01, его сконструировали еще в СССР, затем появились более модернизированные модели – Р2 и Р3. Отличаются аппараты размерами сопел и мощностью редуктора. Более современные ручные установки:
- Смена;
- Quicky;
- Орбита;
- Secator.
Они отличаются набором дополнительных функций и производительностью.
Quicky-Е может осуществлять фигурную резку, по заданным чертежам, скорость работы достигает 1000 мм в минуту, максимально допустимая толщина металла до 100 мм. Устройство имеет набор съемных сопел для обеспечения обработки металлических листов или труб различной толщины.
Машинка автогенной резки Messer
Этот аппарат может работать, используя различные виды горючего газа, в отличие от прототипа Р1-01,который работает только на ацетилене.
Ручной резак Secator имеет более улучшенные характеристики по сравнению с аналогами.
Резак Р2-01
С его помощью можно обрабатывать металл толщиной до 300 мм, это обеспечивают дополнительные насадки, входящие в комплект, они съемные и их можно приобрести дополнительно, по мере износа. Secator может производить следующие виды резки:
- фигурную;
- прямую;
- кольцевую;
- под скосом.
Скорость может регулироваться в диапазоне от 100 1200 мм в минуту, а с помощью встроенной муфты свободного хода обеспечивается плавное перемещение машины по листу металла. Редуктор с воздушным охлаждением обеспечивает более чистую работу и сокращает расход горючего вещества.
Вышеперечисленные модели относятся к ручным, то есть они компактные, управляются с помощью рук мастера. Но для больших объемов обрабатываемого металла работать с такими
Стационарная режущая установка
установками неудобно и не эффективно. Для промышленного производства применяются стационарные режущие установки — это, по сути, та же технология.
Они представляют собой станок со столешницей, в которую встроен режущий механизм. Работу его обеспечивает электрический
компрессор, для которого необходима электросеть с не менее 380 В и трехфазными розетками. Технология работы моделей стационарных режущих установок ничем, но отличается от ручных. Разница лишь в производительности, максимальной температуре нагрева, и способности обрабатывать металл, толщиной более 300 мм.
Условия для резки металла газом
Газовая резка металла будет эффективна только в том случае, когда температура воспламенения металла будет меньшей, чем температура плавления. Такие пропорции соблюдаются в низкоуглеродистых сплавах, они плавятся при 1500 оС, а процесс воспламенения наступает при 1300 оС.
Для качественной работы установки необходимо обеспечить постоянную подачу газа, поскольку кислороду необходимо постоянное количество теплоты, которая поддерживается в основном (на 70%) за счет сгорания металла и лишь 30% обеспечивает пламя газа.
Если его прекратить, металл перестанет вырабатывать тепло и кислород не сможет выполнять возложенные на него функции.
Работа резака, обучение резки металла
Максимальная температура ручных газовых резаков достигает 1300 оС, это достаточная величина для обработки большинства видов металла, однако, есть и такие, которые начинают плавиться при особо высоких температурах, например, окисел алюминия – 2050 оС (это почти в три раза больше чем температура плавления чистого алюминия), сталь с содержанием хрома – 2000 оС, никеля – 1985 оС.
Если металл достаточно не разогрет и не начат процесс плавления, кислород не сможет вытеснить тугоплавкие окислы. Обратная этой ситуация, когда металл имеет низкую температуру плавления, под воздействием горящего газа он может просто расплавиться, так, нельзя применять данный способ резки для чугуна.
Техника безопасности
Осуществление резки металла с помощью газовой установки лучше доверить опытному специалисту, поскольку при неаккуратном обращении последствия могут быть достаточно печальными.
Техника безопасности предполагает выполнения следующих условий:
Устройство газовой горелки
- хорошая вентиляция в помещении, где будут осуществляться работы;
- на расстоянии 5 метров не должно быть баллонов с газом и прочими горючими веществами;
- работы должны вестись в защитной маске или специальных очках, а также в огнеупорной одежде;
- направлять пламя необходимо в противоположную сторону от источника газа;
- шланги в процессе эксплуатации прибора нельзя перегибать, наступать на них, зажимать ногами;
- если делается перерыв, то следует полностью погасить пламя у горелки и закрутить газовые вентили баллонов.
Соблюдение этих простых условий обеспечит безопасную и эффективную работу по резке металла газовой установкой.
: Работа резака, обучение резки металла
Источник: https://promtu.ru/obrabotka-metallov/gazovyiy-rezak-dlya-metalla
Границы применимости
Толщина свариваемых материалов: применение газовой сварки экономически целесообразно для материалов толщиной до 10 мм.
Типы материалов: нелегированные и легированные стали, стальное литье, серый чугун, цветные металлы.
Область использования: сварка тонкостенных металлических изделий, сельскохозяйственное и транспортное машиностроение, монтаж и ремонт трубопроводов.
Параметры: скорость плавления стали 0,2 — 0,5, алюминия 0,15 — 0,2 кг/ч.
Выбор характеристики пламени: нейтральное пламя (соотношение горючий газ: кислород = 1: 1) применяют при сварке стали, окислительное пламя (избыток кислорода) — при сварке латуни, восстановительное пламя (избыток горючего газа) — при сварке алюминия и алюминиевых сплавов.
Положение шва при сварке: нижнее, горизонтальное, горизонтальное на вертикальной поверхности, полупотолочное, потолочное, вертикальное (снизу вверх и сверху вниз).
Расход сварочных материалов
Расход горючего газа: при толщине материала s = 1 мм 100 ацетилена (из 1 кг карбида кальция получают 300 л ацетилена; для полного разложения 1 кг карбида кальция необходимо 10л воды).
Расход сварочной проволоки при газовой сварке в зависимости от толщины металла (при разделке кромок с углом раскрытия 50°)
Максимально допустимый отбор газа из баллона: ацетилена 1000, кислорода 10 000 из каждого баллона.
Рабочие давления, регистрируемые манометром редуктора: для ацетилена 0,2, для кислорода 2,5 — 3,5 кг/см².
Горючие газы для газовой сварки
Параметр | Ацетилен С2Н2 | Бытовой газ | Водород H2 | Пропан С3Н8 |
Мощность пламени, ккал/(см². с) Температура пламени при использовании кислорода, °С | 10,7 | 3,03 | 3,34 | 2,56 |
3200 | 2000 | 2100 | 2750 | |
Концентрация, обеспечивающая воспламенение, % (объемн.) | 2,8 — 82 | 6,5 — 35 | 4,1 — 75 | 2,1 — 9,5 |
2,8 — 93 | 4,5 — 95 | 3,0 — 45 | ||
Минимальная температура воспламенения в кислороде, °С | 300 | 450 | 450 | 490 |
1,171 | 0,680 | 0,090 | 2,004 | |
Условия хранения | В стальном баллоне под давлением до 15 кг/см² | Отбор из городской сети | В стальном баллоне под давлением до 150 кг/см² | В стальном баллоне |
Цвет маркировки баллона | Желтый | Красный | Красный |
Гранулометрия зерен карбида (по TGL 11649, лист I):
Резка металла кислородно-пропановым резаком
При возникновении необходимости работы с толстослойным металлом используется газовый резак. Он осуществляет разрез металлического листа с помощью горячей пламенной струи. Она формируется благодаря смешению двух газов — это пропан и кислород.
Кислородно-пропановым резаком невозможно осуществить резку высокоуглеродистых металлов, меди и ее сплавов, алюминия. Спектр материалов, поддающихся воздействию, ограничен низкоуглеродистыми сталями марки от 08 до 20Г по ГОСТу (1050-60) и среднеуглеродистым — от 30 до 50Г2 (ГОСТ 1050-60).
Пропановый резак раскраивает металл, имеющий толщину не более 300 мм.
Для работы необходимо иметь
- кислородные шланги высокого давления
- баллоны с пропаном и кислородом
- мундштук
- резак
Все детали газового оборудования стандартные и при поломке могут быть заменены.
Подготовка к работе
Перед началом работ необходимо убедится в безопасности: на одежде, полу, окружающих поверхностях должны отсутствовать следы масла и прочие легковоспламеняющиеся вещества. Далее следует осмотреть газовое оборудование на предмет полной комплектации и исправности. Следующие шаги помогут привести оборудование в режим готовности:
- Продуйте все шланги высокого давления газом для удаления пыли и грязи, прежде чем начнете подсоединять их. Проверьте подсос в каналах резака. Прикрепите с помощью ниппеля и гайки кислородный шланг к штуцеру с правой резьбой. Пропановый шланг прикрепите к левому штуцеру;
- Проверьте, нет ли утечки газов в разъемных соединениях;
- Проверьте исправность манометров. Обратите внимание на герметичность газовых редукторов.
Начало работы
Расход кислорода при резке металла в 10 раз выше, чем расход пропана.
- Закройте все вентили резака и выставьте на редукторах рабочие атмосферы: на кислородном – 5, на газовом – 0,5.
- Откройте пропановый баллон на четверть и подожгите.
- Уприте сопло резака под наклоном в металлическую поверхность и плавно откройте регулирующий кислород.
- Переходите к процессу регулировки пламени: поочередно открывайте кислород и газ, пока пламя не приобретет синий цвет и у него не появиться коронка.
- Силу пламени выбирайте исходя из толщины металла.
Процесс резки
- Начинайте резку металла с той точки, от которой должен пойти разрез.
- Разогрейте эту точку до температуры возгорания металла (1000-1300 C). Когда металл воспламенится (поверхность при этом будет выглядеть мокрой) откройте вентиль режущего кислорода и пустите узконаправленную струю.
- Плавно ведите резак кислородный по линии разреза, под углом 84-85° в противоположную сторону от резки. Если толщина метала больше 95 мм, сделайте отклонение на 7-10°.
- После того, как линия разреза достигла 15-20 мм, измените угол наклона на 20-30°.
При правильном выборе скорости перемещения газового резака поток искр и шлака вылетает из разреза прямо вниз, кромки при этом получаются чистыми, отсутствуют подтеки и наплавления.
Если в процессе выполнения работы у вас оборвался кислородный шланг – не паникуйте. Закройте подачу пропана, а затем оба баллона. Исчезнувшее в процессе регулировки пламя нужно разжечь повторно, предварительно закрыв вентили резака.
Техника безопасности при резке и сварке
Разработанные четкие правила техники безопасности позволили сделать процесс контролируемым, жизнь и здоровье резчиков и окружающих стала вне опасности:
- Использование специальной маски с светофильтрами, респиратора и защитного костюма.
- Допуск к работам лиц, достигших возраста 18 лет и прошедших специальный курс по газовому делу, имеющие удостоверение с отметкой на проведение данного вида работ.
- Обмыливание на плотность всех соединений аппаратуры, трубопроводов и арматуры для предотвращения утечки газа.
- Использование специальных тележек и носилок для перемещения отдельных баллонов. Отсутствие ударение баллонов друг о друга при транспортировке.
- Не допускается попадание на кислородный редуктор, вентиль или шланг сжиженного газа, жиров, масла.
- Запрещается открывание замасленными руками редуктора и вентиля кислородного баллона.
- Перед началом работ необходимо выпускать через резак смесь газа и воздуха, образующуюся в шланге. Таким образом предотвращаем появление обратного удара в шланг и редуктор.
- Прогрев металла только сжиженным газом без кислорода строго запрещается.
Источник: https://svarkagid.ru/tehnologii/rezka-metalla-kislorodom-i-propanom.html
Вспомогательное оборудование для газовой сварки
Вспомогательное оборудование для газовой сварки
Вспомогательное оборудование | Среда | Параметры | Изготовитель |
Распределительный стеллаж I | Кислород, азот, сжатый воздух, водород, пропан, ацетилен, двуокись углерода | Распределительный стеллаж для 4 — 12 стальных баллонов | Autogen |
Распределительный стеллаж II | Распределительный стеллаж для 2×6, 2×8; 2×10, 2×12, 2×24 стальных баллонов | ||
Стандартные стальные баллоны для сжатого газа | Кислород, азот, сжатый воздух, ацетилен, двуокись углерода | Объем 40 л, масса без газа 70 кг | |
Тележка для стеллажа | Кислород, азот, водород | Стеллаж для 20, 33, 54, 72 стальных баллонов | |
Соединение баллонов | Кислород, водород, пропан, ацетилен | — | |
Транспортная тележка для баллонов: | |||
тип исполнения I | 2 стальных баллона | — | Предприятие , Грефендорф, ГДР |
тип исполнения II | 1 стальной баллон, 1 газогенератор | — | |
Быстродействующий клапан, один газ | Кислород, ацетилен | Расход 5200 м³/ч | Autogen |
Быстродействующий клапан, смесь двух газов | Смеси: кислород — ацетилен, кислород — бытовой газ, кислород — водород | Расход кислорода 5200, ацетилена 2000 м³/ч |
Какая резьба на баллонах
Резьба под вентили в горловинах баллонов по ГОСТ 9909-81 W19,2 — 10-литровые и меньшего объема баллоны для любых газов, а также углекислотные огнетушители W27,8 — 40-литровые кислород, углекислота, аргон, гелий, а также 5, 12, 27 и 50 литров пропан W30,3 — 40-литровые ацетилен М18х1,5 — огнетушители (Внимание! Не пытайтесь заправлять в порошковые огнетушители углекислоту или любой сжатый газ, но вполне можно заправлять пропан.)
Резьба на вентиле для присоединения редуктора G1/2″ — часто встречается на 10-литровых баллонах, под стандартный редуктор нужен переходник G3/4″ — стандарт на 40-литровых кислороде, углекислоте, аргоне, гелии, сварочных смесях СП 21,8×1/14″ — для пропана резьба левая
Выбор основных и присадочных материалов, термообработка
Для групп материалов, указанных в п. 1.1.1, выбор основных и присадочных материалов при сварке сталей производится по табл. 1.7. Свойства (химический состав и параметры прочности) приведены в табл. 1.8. Параметры сварки стального литья соответствуют параметрам сварки стали. Сварку серого чугуна производят с предварительным подогревом или до 250 °С («полугорячая сварка»), или до 600 °С (горячая сварка); скорость нагрева и охлаждения 50 °. Присадочный материал — сварочный пруток из аманита (серого чугуна, Ó в = 30 кгс/мм2, твердость НВ 200, температура плавления 1200 °С), диаметром 4, 5, 6, 8, 10, 12 мм (изготовитель — предприятие по сварочной технике, Эйзенах). Наиболее интересными (в аспекте газовой сварки цветных металлов) являются прежде всего алюминий и его сплавы. Присадочные материалы можно выбрать по TGL 14908, флюсы — по TGL 14709, лист 2, F-; подготовка соединений — по TGL 14906, листы 1 — 5.
Сварка, пайка, склейка и резка материалов
Наплавка
Наплавка представляет собой разновидность сварки, заключающуюся в локальном нанесении методом сварки материала на основное изделие для защиты его от коррозии и износа или для наращивания и увеличения его объема.
Лазерная сварка
При лазерной сварке для оплавления свариваемых кромок используют световой пучок. Сконцентрированный световой луч характеризуется монохроматичностью, когерентностью, параллельностью и высокой плотностью энергии.
Электроннолучевая сварка
В процессе сварки используется тепло, выделяющееся при соударении ускоренных электронов с металлом свариваемых деталей.
источник
Расчет норм расхода сварочных материалов , страница 2
Величина Кур определяется экспериментально, путем наплавки валика на пластину или расчетным методом по формуле:
где Кп – коэффициент перехода металла электрода в шов, %;
Значение величины Кп указывается в паспорте электрода.
Величина Ког определяется по формуле:
где Lэ – полная длина электрода по ГОСТ 9466, мм;
lо – длина огарка по ГОСТ 9466, мм.
Величина Кпокр определяется экспериментально или рассчитывается по формуле:
где q – коэффициент массы покрытия, указанный в паспорте электрода, %.
Значение коэффициентов Кур, Ког, К покр, Кп зависят от марки, диаметра применяемых электродов и приведены в /1/.
2.2 Полуавтоматическая сварка в среде углекислого газа
Норматив расхода сварочной проволоки при полуавтоматической сварке плавящимся электродом в среде углекислого газа устанавливается исходя из массы наплавленного металла, технологических потерь и отходов и определяется по формуле (1). Величина технологических потерь сварочной проволоки не должна превышать 15%.
Норматив расхода сварочной проволоки принимается равным массе наплавленного металла с коэффициентом потерь Кпр=1,15. При сварке швов малой протяженности (l=0,3м) коэффициент Кпр следует принимать равным 1,3 на кг наплавленного металла.
Норматив расхода углеродистого газа при сварке устанавливается в зависимости от массы наплавленного металла и определяется по формуле (1).
Коэффициент расхода углекислого газа Кг учитывает расход газа на сварку и определяется по часовому расходу и времени сварки, с учетом неизбежных технологических потерь газа на продувку системы, утечку из-за не плотностей присоединения шлангов и остатка в баллоне (цистерне), а также расхода газа на все виды прихваточных работ.
В зависимости от условий выполнения сварки, на основании опытно-производственных данных заводов, величина коэффициента расхода углекислого газа Кг на 1 кг наплавленного металла устанавливается следующая:
— при сварке в закрытых помещениях (цехах), где отсутствует сильный воздухообмен, Кг=1,6кг;
— при сварке на открытых площадках; где имеют место неблагоприятные атмосферные условия (сильный ветер, сильные морозы и т.д.), Кг = 3,0-4,0кг;
— при сварке швов малой протяженностью (l=0,3м) и прерывистых Кг=2,0кг.
2.3 Полуавтоматическая и автоматическая сварка под слоем флюса
Норматив расхода сварочной проволоки определяется исходя из массы наплавленного металла и технологических потерь и определяется по формуле (1).
Сумма всех технологических потерь сварочной проволоки составляет 3% от массы наплавленного металла, следовательно, коэффициент потерь Кпр равен 1,03.
Нормативы расхода флюса входит расход флюса на образование шлаковой корки и технологические потери его на рассыпание, и распыление в процессе сварки и при замене использованного флюса новым.
Нормативы расхода флюса определяется по формуле (1).
Коэффициент расхода флюса Кф (в зависимости от способа сварки и толщины свариваемого металла) приведены в табл.3
Для электрошлаковой сварки конструкций коэффициенты расхода сварочной проволоки и флюса на 1 кг наплавленного металла принимаются следующие:
источник
Способы сваривания
Существует два вида сварки: «на себя» и «от себя». В первом случае горелка движется первой, разогревая до необходимой температуры сварочную ванну, а за ней присадочная проволока. При этом необходимо, чтобы пламя горелки подавалось в зону сваривания под углом 45°. Горелка должна двигаться кругами или полукругами вдоль шва, присадка должна поспевать за пламенем и двигаться внутрь сварной зоны.
Во втором случае, наоборот, перед горелкой движется присадочный стержень. Обычно таким способом сваривают заготовки из толстого металла. Потому что сам процесс расплавления основного металла и присадки происходит одновременно, и смешанный расплавленный металл полностью заполняет сварную ванну. Но самое важное при таком способе соединения необходимо добиться равномерного смешивания двух металлов. Если взаимное проникновение будет слабым, то и шов получится некачественным.
Кстати, взаимопроникновение металлов, по-научному пенетрация, может выглядеть чисто внешне некрасиво, но при этом прочность соединительного шва будет максимально высоким. И, наоборот, красивый шов не обеспечивает высокое качество сварного соединения. В этом случае красота может оказаться обманчивой. Но чтобы результат был гарантированно качественным, необходимо устанавливать зазор между заготовками по минимуму, а также проводить предварительные прихватки с той же целью – уменьшение зазора.