Назначение и устройство
Макетная плата для сборки без пайки позволяет произвести монтаж электрической схемы и запустить ее без использования паяльника. При этом можно проверить все параметры и характеристики будущего устройства, подключив к плате измерительные и контрольные приборы.
Макетная плата представляет собой пластину из полимерного материала, являющегося диэлектриком. На пластине в определенном порядке просверлены монтажные отверстия, в которые должны вставляться выводы деталей – компонентов будущего устройства.
Отверстия допускают подключение выводов диаметром 0,4-0,7 мм. Расположены они на плате, как правило, с шагом 2,54 мм.
Чтобы смоделировать соединения выводов компонентов между собой, макетка имеет специальные токопроводящие пластины, в определенном порядке соединяющие отверстия.
Как правило, эти соединения осуществляются группами вдоль платы по ее длинным сторонам. Таких рядов может быть два-три. Эти контактные группы используются как шины для подключения питания.
Между продольными рядами отверстия соединяются пластинами в группы по пять. Эти пластины расположены в направлении поперек платы.
Около отверстий в местах будущих контактов токопроводящие пластины имеют конструктивные особенности, позволяющие зажимать и прочно удерживать выводы деталей, обеспечивая при этом наличие электрического контакта. В этом и есть смысл монтажа без пайки.
Качественные макетные платы допускают монтаж и разборку при сохранении прочного и надежного соединения между деталями до 50 000 раз.
Макетные платы, выпускаемые промышленным способом и приобретенные в торговой сети, как правило, имеют схему расположения контактов и токопроводящих связей между отверстиями.
Как правильно пользоваться
Чтобы успешно и рационально пользоваться макеткой, необходимо иметь еще такие приспособления:
- несколько монтажных проводов диаметром 0,4-0,7 мм для устройства различных перемычек и подключения питания;
- кусачки-бокорезы;
- плоскогубцы;
- пинцет.
Паяльник при монтаже без пайки, разумеется, не нужен, но он может понадобиться, чтобы припаять провода к клеммам источника питания, если отсутствуют разъемные изделия. Иногда пайку придется применить для осуществления экранирования.
Зная расположение токопроводящих дорожек на макетной плате, легко осуществить монтаж любой схемы и, подключив ее к источнику питания, проверить работоспособность. Для сборки нужно только вставить выводы компонентов в зажимы разъемов и соединить их в нужной последовательности.
При этом необходимо четко представлять расположение токопроводящих дорожек, чтобы не допустить короткого замыкания. При необходимости осуществления контактов между дорожками на макетной плате используются соединители.
В случае если выводы деталей по диаметру не подходят под монтажные отверстия, к ним можно подпаять или подмотать отрезки подходящего провода. Микросхемы и компоненты в BAG-корпусах устанавливаются в центре платы.
Основные виды макетных плат для Arduino и ее схемы
Макетные платы различаются по количеству выводов, расположенных на панели, числом шин и конфигурацией. Бывают платы, в которых контактные соединения выполняются посредством пайки, однако работать с ними сложнее, чем с беспаечными устройствами и мы их рассмотрим в другой статье.
Большая макетная плата
Цветные макетные платы
Макетная плата с клеймами
В зависимости от характеристик наиболее распространены такие виды:
- Для сборки больших микросхем в основном используются беспаечные платы на 830 или 400 отверстий. Для соединения нескольких компонентов и подвода проводов к необходимым точкам – на 8, 10, 16 отверстий;
- С наличием пазов для сцепления плат, которые позволяют реализовывать достаточно большие проекты;
- С наличием самоклейки на основании для надежного закрепления на устройстве;
- С нанесенными на плату обозначениями для подключения устройств.
В зависимости о стоимости и производителя в комплектацию могут входить и дополнительные аксессуары – провода-джамперы, разнообразные разъемы. Но главным критерием качества всегда остается количество контактных разъемов и их технические характеристики.
Чтобы знать, как пользоваться макетной платой, следует понять принцип ее устройства. Он достаточно прост.
Схема макетной платы
Макетная плата имеет пластиковое основание с множеством отверстий (стандартное расстояние между ними составляет 2,54 мм). Внутри конструкции расположены ряды металлических пластин. На каждой пластине имеются клипсы, которые спрятаны в пластиковой части установки.
Включение проводов выполняется именно в эти клипсы. При подключении проводника к одному из отдельных отверстий, контакт одновременно подключается и ко всем остальным контактам отдельного ряда. Следовательно, подключая контакты других устройств к остальным клипсам, мы связываем их проводником – рельсом с клипсами.
Стоит обратить внимание, что одна рельса содержит 5 клипс. Это общий стандарт для всех макетных плат. То есть, к каждому рельсу можно подсоединить до пяти элементов, и они будут соединены между собой.
Следует отметить, что хотя в каждом ряду расположены десять отверстий, они все-таки разделены на две изолированные части, по пять в каждой. Между ними расположен рельс без пинов. Такая конструкция необходима для изоляции пластин друг от друга, и позволяет просто подключать микросхемы, выполненные в DIP-корпусах.
Будет интересно➡ Схемы монтажа и способы подключения солнечных батарей
Подключение микросхемы к макетной плате
Для упрощения ориентации на макетную плату также нанесены цифровые и буквенные обозначения, которыми можно руководствоваться, создавая, например, инструкцию для подключения.
Некоторые макетные платы включают также по две линии питания с каждой из сторон. Обычно «красная линия» используется для подачи «+» напряжения, «синяя» – для «-». За счет наличия двух шин питания на плату могут подаваться два различных уровня напряжения.
Внимание! Макетные платы абсолютно недопустимо использовать с напряжением 220В!
Если плата большая, то линии питания “разрываются” посередине. Это позволяет использовать большее количество вариантов подключения. Например, вы сможете собрать на одной плате устройства с питанием 3 и 5 Вольт.
Пользоваться макетной платой достаточно просто. При создании схемы в отверстия на пластиковом корпусе вставляются необходимые элементы – конденсаторы, резисторы, различные индикаторы, светодиоды и т.д. Ширина разъемов позволяет подключать к контактам проводники с сечением от 0,4 до 0,7 мм.
Схема подключения светодиода к монтажной плате
Например, вам нужно соединить между собой два элемента – светодиод и резистор. Для этого вы берете ножку первого элементам (светодиода) и вставляете ее, например, в ряд номер 2. Вторую ножку вы вставляете в другой ряд. Например, 3. Если вставите ножку в тот же ряд, схема работать не будет, т.к. обе ножки через общую рельсу будут соединены железным проводником. Будет короткое замыкание. Ток пойдет через место соединения напрямую, минуя светодиод. Никакой пользы от этого не будет.
Подключение светодиода к макетной плате. Размещаем светодиод в удобном месте. Главное, для каждой ножки – свой ряд
Если вы воткнете контакт в соседний ряд, то между ними не будет замыкания, т.к. соседние ряды не связаны между собой проводниками (ведь связаны только 5 контактов в одном ряду). В какой именно ряд вы воткнете ножку – не важно. Главное, что не в тот же, что у первой ножки.
Для удобства в реальных схемах вторую ножку размещают не в соседнем ряду, а в любом другом, чуть подальше от первого. Нужно выбирать место монтажа с учетом размеров самого светодиода, чтобы не выгибать сильно контакты.
Итак, светодиод мы закрепили – он устойчиво стоит двумя ногами в рядах 2 и 3. Давайте теперь подключим к этой схеме резистор. Мы возьмем одну ножку резистора и вставим в тот же ряд, что одна из ножек светодиода. Например, в ряд номер 3 – в любое место. В одном ряду 5 контактов, не важно, в какой из контактов мы попадем, главное, что в этом же ряду! Затем вторую ножку резистора вставим в другой ряд, например, в седьмой .
Подключение светодиода и резистора к макетной плате. Соединяем одни ножки элементов
Получится, что ножки в 3 ряду встретятся друг с другом через внутренне соединение и будут связаны, как будто мы спаяли или скрутили их. И между ними с удовольствием пойдет ток, ведь он любит металлическое соединение.
У нас остались одна ножка у светодиода и одна ножка у резистора. Ножку светодиода мы должны соединить с платой ардуино. Если это длинная ножка, то соединяем ее с 13 пином. Если короткая, то с пином GND. В нашем случае, мы соединим короткую ножку во втором ряду с разъемом GND на плате Ардуино. Для этого мы берем провод “папа-папа” и втыкаем его в ряд, где находится наша свободная ножка. У нас это ряд 2 (вторая ножка светодиода уже связана в ряду 3 с резистором). Опять-таки не важно, куда именно мы воткнем провод, главное, что во втором ряду – в том, где уже ждет ножка светодиода. Вторую часть провода мы соединяем с платой Arduino.
Пример подключения светодиода и резистора к макетной плате. Идем к GND
Будет интересно➡ Как расчитать сечения кабеля по мощности и току: формулы и примеры
Точно так же мы соединяем оставшуюся часть схемы – вторую часть резистора через проводник ведем к другому разъему Ардуино. В нашем случае с ряда 7 мы тянем проводник к 13 пину ардуино. Получится, что длинная ножка светодиода идет к плюсу – к 13 пину. А короткая у нас уже давно соединена с землей – GND.
Все, схема собрана. И после включения питания ток пойдет так (схематически): через источник внутри Ардуино дойдет до 13 пина, через красный проводник дойдет до макетной платы, пройдет через сопротивление, потом через светодиод, потом через черный провод вернется в ардуино. Схема в итоге получилась без разрывов, рабочая.
Соберите и проверьте эту схему. Если вдруг что-то не заработает, проверьте контакты – не всегда провода и макетные платы из китайских интернет-магазинов имеют безупречное качество.
Еще одним примером создания прототипа схемы с использованием макетной платы может стать такой вариант реализации:
Для ее сборки необходимо взять:
- Макетную плату (breadboard);
- провода для соединения;
- 1 светодиод;
- тактовую кнопку;
- резистор с номинальным сопротивлением 330 Ом;
- батарейку типа «Крона» на 9В.
Плюс батарейки подключается к плюсовой шине, а минус к отрицательной. Если схема собрана правильно, то при нажатии на кнопку будет обеспечиваться загорание светодиода.
Еще несколько примеров:
Пример схемы с макетной платой
Пример схемы с макетной платой
Самодельные макетные платы
Эти времена я еще застал на радиокружке. Тогда мы делали макетные платы сами. Брали острый резец и нарезали квадратики на фольгированном текстолите. Далее покрывали их припоем.
Если надо где-то было соединить дорожки, мы просто делали перемычки между квадратиками каплей припоя. Получалось качественно и красиво. Если было лень перепаивать радиоэлементы на нормально-разведенную плату с дорожками, просто оставляли как есть и пользовались устройством.
Одноразовые макетные платы
Производители все-таки это дело “чухнули”, или как говорится в экономике, спрос рождает предложение. Стали появляться готовые макетные платки односторонние и даже двухсторонние на любой размер и вкус.
Кстати, их можно найти на Али сразу целым набором.
Отверстия очень удобно подобраны по размерам выводов микросхем, а также других радиоэлементов. Поэтому очень удобно на таких макетных платах собирать и проверять радиоэлектронное устройство. Да и стоят они недорого.
Обратная сторона таких макетных плат уже с готовыми устройствами будет выглядеть приблизительно вот так:
В чем же минусы этих макетных плат? Лучше все-таки их использовать единожды, так как при многоразовом использовании у них могут отлетать пятачки, что приведет к ее непригодности.
Собираем простые схемы на макетной плате
Давайте попробуем соединить несколько элементов и убедимся, что все работает. Для сборки этих простых схем мы будем использовать элементы:
Название | Особенность подключения | Какую функцию выполняет | Картинка |
Светодиоды | это полярный элемент, у него есть + и — (или анод и катод) | Красиво горит | |
Резисторы | для нашего опыта понадобиться резистор от 300 до 1000 Ом | Ограничивает ток, чтобы светодиод не сгорел | |
Тактовая кнопка | С двумя или четырьмя контактами | Замыкает и размыкает цепь | |
Батарейный отсек | С двумя пальчиковыми батарейками AA по 1,5 вольта каждая | Питает схему | |
Плата Arduino Nano | Вставляется в макетную плату | Контроллер который позволяет нам программировать электронные схемы |
Заставим светодиод гореть
Рис. 1 Принципиальная схема. Сборка схемы со светодиодом Для начала нарисуем схему которую мы пытаемся собрать. Смысл схемы такой: электрический ток проходит через светодиод и он горит, резистор при этом ограничивает ток, чтобы светодиод не сгорел.
Наш наш вариант сборки на макетной плате.
Рис. 2 Пример сборки схемы на макетной плате.
Обратите внимание , что в горизонтальные ряды удобно подключать питание, сделать из них общий + и — . Эти обозначения на некоторых макетных платах, всего лишь подсказка для вас, так подключать удобно. Действительно, часто удобно иметь общую “шину” общий провод с плюсом и с минусом. Но это не значит, что вы не можете подключать туда что-то другое.
Будет интересно➡ ШИМ pwm контроллер: принцип работы, область применения, характеристики
Схема с двумя светодиодами подключенными последовательно и кнопкой.
Немного усложним нашу схему, теперь зажжем два светодиода через кнопку. Кнопка позволит нам замыкать и размыкать цепь и таким образом управлять включением светодиодов.
Рис. 3 Принципиальная схема к упражнению 2. Подключение двух светодиодов последовательно.
Попробуйте собрать эту схему самостоятельно. Ниже — наше решение.
Рис. 4. Сборка схемы с двумя светодиодами на макетной плате.
Выводы
Макетные платы breadboard оптимальны для создания прототипов и цифровых схем не очень высокой сложности. В своей практике их часто используют как новички, познающие основы схемотехники, так и опытные профессионалы ввиду простоты монтажа и достаточно высокого качества соединения рабочих контактов. С помощью таких плат можно быстро и без лишней пайки создать прототип, протестировать его и затем уже собрать устройство с более надежным вариантом соединения.
Несмотря на большое количество плюсов, у макетных плат есть и минусы. Они не позволяют сделать надежное устройство, эксплуатируемое в сложных условиях. Они не предназначены для сборки аналоговых схем, с высокой чувствительностью к величине сопротивления, т.к. сопротивление в месте контакта завсит от многих факторов и может меняться. Платы нельзя подключать к линии с высоким напряжением. Наконец, такие платы тоже стоят денег – монтажные платы с пайкой обойдутся дешевле.
В любом случае, для первых проектов у ардуинщика каких-то альтернатив нет. Кроме того, подключение макетной платы способствует развитию абстрактного мышления – а это никогда не бывает лишним.
Оцените статью:
Советы по работе c паяными платами
Несколько полезных рекомендаций, которые помогут вам правильно собрать плату:
- Сразу разрежьте плату до нужных размеров. Для этого подойдут обычные ножницы, резак, ножовка. Можно даже просто разломать ее по отверстиям, но затем зачистив края.
- Если вы не собираетесь пользоваться платой прямо сейчас, то не трогайте лишний раз руками участки с фольгой. Руки могут быть влажными, что приведет к коррозии поверхности и ухудшению контакта.
- Если окислы или загрязнения имеют место, то очистите их при помощи нулевой наждачной бумаги или обычным ластиком.
- Радиоэлементы устанавливают со стороны, где нет полосок из фольги. Выводы просовывают в отверстия и запаивают с обратной стороны.
- Синий цвет токопроводящих дорожек обозначает «минус» схемы, красный «плюс», а зеленый используют по своему усмотрению. Дорожки маркируются с той же стороны, где расположена фольга.
- Самое важное позиционирование деталей происходит в вертикальном положении, так как в этом случае ошибка приведет к неправильно собранной цепи.
Учитывайте, что макетные платы обоих типов могут иметь по бокам пазы. Это необходимо для тех, кто собирает большое устройство, состоящее из нескольких модулей. Пазы позволяют собрать одну крупную плату из нескольких маленьких.
Первый блин комом или сразу troubleshooting
Есть такой анекдот: купил человек самолёт и журнал с описанием «Как делать мёртвую петлю». Следуя инструкции, сел в самолёт, взлетел, начал делать мёртвую петлю — всё получается. Переворачивает страницу, а там: «… выход из мёртвой петли читайте в следующем номере».
Можно много говорить о культуре пайки и о том, что это целое искусство. Одно останется неизменным: если делаешь что-то в первый раз и по книжке, то сначала может не получится. Вот наша первая плата, набор «Хамелеон», вернее то, что из неё получилось. Какие ошибки были допущены?
1. Нарушена технология пайки, как результат — непропаянные контакты, которые лучше выпаять и впаять снова (не перепутав полярность!) 2. Нарушена технология работы: каждая деталь впаивалась по очереди. Ниже вы увидите, насколько выгоднее в этом плане послушать инструкцию и сначала собрать все детали, а потом закрепить их.
Результат:
детали красиво стоят в кривь и в кось, а из трех цепочек диодов загорелась в итоге только одна.
Возможное решение:
выпаять все детали и впаять заново.
Позитивный момент:
можно найти всегда. В данном случае у нас нигде нет «паразитарных перемычек». Правда, удалять их достаточно просто в любом случае: просто провести жалом паяльника и разделить спаявшиеся вместе контакты.